旋流板塔相关资料

旋流板塔
  旋流板塔除尘脱硫一体化装置,简称旋流板塔,是一种喷射型塔板洗涤器,由浙江大学化工系谭天恩教授于发明(专利号ZL94210374.2),关键部件为图1所示旋流塔板。塔板叶片如固定的风车叶片,气流通过叶片时产生旋转和离心运动,吸收液通过中间盲板均匀分配到个叶片,形成薄液层,与旋转向上的气流形成旋转和离心的效果,喷成细小液滴,甩向塔壁后。液滴受重力作用集流到集液槽,并通过降液管流到下一塔板的盲板区。具有一定风压、风速的待处理气流从塔的底部进,上部出。吸收液从塔的上部进,下部出。气流与吸收液在塔内作相对运动,并在旋流塔板的结构部位形成很大表面积的水膜,从而大大提高了吸收作用。每一层的吸收液经旋流离心作用掉入边缘的收集槽,再经导流管进入下一层塔板,进行下一层的吸收作用。
  主要机制是尘粒与液滴的惯性碰撞,离心分离和液膜粘附等。这种塔板由于开孔率较大,允许高速气流通过,因此负荷较高,处理能力较大,压降较低,操作弹性较大。其气液接触时间较短,适合于气相扩散控制的过程,如气液直接接触传热、快速反应吸收等。因此脱硫过程中所用的脱硫剂应该是快速反应吸收型的,不适合用碳酸钙等反应速度较慢的脱硫剂。
  在烟道入口处设计初级喷淋装置,当烟气经进口烟道,与布置在进口烟道段的喷淋形成的水雾进行传质换热,得到初步降温和去除部分二氧化硫,切向进入吸收塔。烟气在吸收塔内通过旋流气动装置的加速和旋流,烟尘与经过雾化的吸收液发生碰撞、附着、凝聚、离心分离等综合性的作用,被甩到塔壁,随塔壁水膜流向塔底。旋流板喷淋塔除尘效率可以达到98.5%以上。通过旋流气动装置的设置,使烟气在同样高度的筒体内旋转次数增加、通过的路径增长,气相紊动剧烈,烟气与吸收液在时间和空间上得到充分的碰撞、接触、溶解、吸收。
  塔内设计多套旋流装置,经过初级净化的烟气旋转上升,由于旋流装置设计合理,旋流气动装置具有导向和接力作用,利用烟气自身的动能产生气动旋流,气液两相充分接触,进行传质反应,烟气在塔内经过多级旋流装置的脱硫,可确保脱硫效率达到技术要求。我公司旋流板的设计、安装经验丰富,拥有大量的业绩。针对不同烟气工况的具体条件进行个性化设计,保证了对旋流板叶片尺寸、旋转角度、仰角、脱硫效率、以及阻力均有严格的控制。
  旋流板的阻力设计很关键,里面有很多经验。老套的平面旋流板无论是效率和防堵以及阻力上都快被淘汰了。带有安装角度的旋流板阻力小得多,由于叶片有两个空间角度,在设计
中要求较高。在用于脱硫时,叶片上的浆液能从圆心向塔壁流动,增加了叶片上的持液时间,所以效率高。用于除尘的时候为了防止堵塞必须保证叶片间距控制在150MM以上。从俯视图上来看叶片闭合无空隙。
旋流板塔大型化的设计与研究1
旋流板塔大型化的设计与研究


.概述
我国是一个能源结构以燃煤为主的国家。大气污染属煤烟型,烟气中大量的SO2对大气造成了严重的污染,致使我国酸雨逐年加重,酸雨面积不断扩大,其覆盖面积已达国土面积的30%。为了控制大气中SO2的含量应严格控制产生SO2污染的主要来源电站的SO2的排放。目前,国内对于中小型电站的烟气脱硫已有一些进展,对于大型电站的烟气处理尚处于不成熟阶段。但随着国家将逐渐取缔小型电站,大中型电站的烟气处理成为急待解决的问题。
对于电站烟气处理,国内采用的工艺流程之一是文丘里加旋流板,而国外多采用文丘里加喷淋等。考虑到不同传质机理的脱硫组合效果更佳,笔者提出了文丘里加旋流板加喷淋的设想,该工艺在山西,广西,海南等地的锅炉和小型电站有成功的应用实例。旋流板是我国自行研究成功的一种喷射型塔板,这种板型由于开孔率较大,允许气流高速通过,因此处理能力较大,而压降较小,操作弹性亦较大。同时,它不仅可以脱硫,还起到气体分布均匀的作用。工艺流程中采用旋流板,可以省去一个气体分布均匀装置,还可以提高脱硫除尘效率。但是应用于大型设备的实际工艺流程中,往往因设备的放大,导致了严重失真的尴尬境地,严重影响了脱硫除尘效果。为了使旋流板可以不失真的应用于大型设备,对于旋流板的设计与研究,是一个新的课题,很值得研究。现以邯郸热电厂大型机组烟气脱硫为例,简述一下我们的研究成果。

.设计条件和设计原则
1.设计条件
邯郸热电厂#11号机组于199811月建成投产,装机容量为200MW,锅炉最大蒸发量为670t/h,每台锅炉配置了两台双室器电场干式高压静电除尘器,除尘效率>=99%,现进行第二
期改造工程,完成脱硫任务。
    烟气经电除尘器除尘后的性能参数:
    烟气量 66.5m3/h
    烟气温度  TS=405.5K
    烟尘排放浓度  108.8mg/Nm3
     SO2排放浓度:1920mg/m3       
2.设计原则
每台静电除尘器后设计两套脱硫装置并联
烟气的空塔气速一般为2.4-4.0m/s的范围内,设计中取3.3m/s.因为气速太大,带液会比较严重;气速太小,塔径将很大,不经济,按3.3m/s计算,塔径也达到了5.7米。
对于这种大塔径的设备,其设计参数计算,运行经验都是难以到的。怎么办?笔者认为前人的成功经验是可以借鉴的。如旋风分离器的通常直径12米为好,最大不要超过2米。那么塔径2米为上限。采用分层法,即把直径5.7米的塔,以2米直径为一单元,将5.7米的直径分为n个单元,再按照等开孔率,等流速,等距离的原则,使气体流动的降压相等,不走短路,而达到高效除尘脱硫的目的。近似相等的原则:根据叶片长度,先假设内层旋流板盲
板直径为500mm,盲板尺寸一般为塔径的1/4左右。内层塔径2000mm,该直径是旋风除尘器设计的允许最大直径,可保证较好脱硫效果,以塔径2000mm为一单元,直径为5700mm的塔径,共需多少层呢?共需层数为2.85层,考虑每层旋流板要设置盲板与溢流堰,所以层数取3层即可达到要求,即除去外层塔壁后,再加设2层筒壁。
随后进行三层塔层的设计计算。为保证烟气的处理效率,气流应能在5.7米的塔内分布均匀,不走偏流,因此必须保证通过三个塔层的旋流板的压强降相等,为达到此目的在设计中应使三层旋流板的开孔率保持一致,并选择相等的气速。我们称之为等开孔率原则等速原则,而气速的大小的选择,前文已论述,在保证夹带液量和气流阻力降较小的条件下 ,尽可能取较高气速,使设备尽量小,取得最佳的经济效果。为了使通过旋流板的气体与筒壁碰撞时能尽可能的高效、等效,进而使脱硫达到最佳效果,设计过程中取三层的叶片长度近似相等,并以此来作为设计塔层尺寸的基本依据,通过多次试算求出符合要求的塔层总体尺寸,我们称之为近似等叶片距离原则。以上三原则,便是本设计的关键与精髓所在,正是基于以上三条原则的设计,才保证了旋流板能在大型脱硫设备中得以高效的应用。

.计算结果及有关说明
按照上述三个设计原则。参考旋流板塔设计有关资料。现将有关设计及主要结果叙述如下:
选择空塔气速3.3m/s。由总气量可求出总塔径为5.7m。取内层塔径为2m,盲板直径为塔径的1/4左右,故取为0.5m,首先粗算应分层数,根据每层塔体叶片近似相等原则,所以共需(5.7-2)/2+1=2.85,已考虑到溢流堰和盲板的长度,故取3层塔壁,由内到外分别称之为123层塔。
首先计算第1层塔的尺寸。根据等流速原则和等开孔率原则,所以存在各层气量之比等于各层流通面积,也等于各层总面积之比。由此可求出第1层气量为3.69m3/h,由相关公式:
1        叶片长度计算公式
dx=10√v√rv
式中:
  dx—叶片长度 m                           
rv—气相重度 kg/m3
      v—气量  m3
2        流通面积计算公式
A0=Aa(sina-(2´m´z)¸(P(dx+dm)))
Aa=P/4´(dx2- dm2)
式中:
A0— 气体流通截面积  m2
a —  仰角°
m —  叶片数,
     z—   叶片厚度 mm
3        开孔率计算公式
   Y= A0¸AT
式中:
  A0— 气体流通截面积  m2
AT— 塔截面  m2
4        压降计算公式
ΔP=ε0´F02¸2´g+3.6´v´F0+4
式中:
    ε0 — 穿孔阻力系数 1.6
F0 — 穿孔动能因子 kg0.5/m0.5s
     其中 F0 =(v0´√rv)/(3600´ A0)
v—  溢流口液速
     v=2.78´L/Af
     其中 L—液量 m3/h
Af—溢流口总面积 cm2 

本文发布于:2024-09-21 16:32:56,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/438913.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:旋流   设计   脱硫
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议