乳液聚合技术

乳液聚合新技术的研究进展
摘要:乳液聚合方法具有广泛的应用范围,近期几年备受关注。本文首先介绍了乳液聚合的基本情况,并着重介绍了一些新的乳液聚合方法和研究成果。
关键词:乳液聚合;进展
前言:
乳液聚合技术的开发始于本世纪20年代末期,当时就已有和目前生产配方类似的乳液聚合的专利出现。30年代初,乳液聚合已见于工业生产。随着时问的推移,乳液聚合过程对商品聚合物的生产具有越来越大的重要性,在许多聚合物如合成橡胶、合成树脂涂料、粘合剂、絮凝剂、抗冲击共聚物等的生产中,乳液聚合已经成为主要的生产方法之一,每年通过该方法制作的聚合物数以千万吨计。【1】
1.乳液聚合基本情况
乳液聚合定义
生产聚合物的方法有四种:本体聚合、溶液聚合、悬浮聚合及乳液聚合。乳液聚合是由单体和水在乳化剂作用下配制成的乳状液中进行的聚合,体系主要由单体、介质(水)、乳化剂及溶于介质(水)的引发剂四种基本组分组成。目前的工业生产中,乳液聚合几乎都是自由基加成聚合,所用的单体几乎都是烯烃及其衍生物,所用的介质大多是水,故有人认为乳液聚合是指在水乳液中按照胶柬机理形成比较独立的乳胶粒中,进行烯烃单体自由基加成聚合来生产高聚物的一种技术。但随着聚合理论的逐步完善,对乳液聚合比较完整的定义应该为:乳液聚合是在水或其他液体作介质的乳液中,按照胶束理论或低聚合物机理生成彼此孤立的乳胶粒,并在其中进行自由基加成聚合或离子加成聚合来生产高聚物的一种聚合方法。
乳液聚合体系至少由单体、引发剂、乳化剂和水四个组分构成,一般水与单体的配比(质量)为70/30~40/60,乳化剂为单体的 %~%,引发剂为单体的%~%;工业配方中常另加缓冲剂、分子量调节剂和表面张力调节剂等。所得产物为胶乳,可直接用以处理织物或作涂料和胶粘剂,也可把胶乳破坏,经洗涤、干燥得粉状或针状聚合物。
乳液聚合的特点
聚合反应发生在分散在水相内的乳胶粒中,尽管在乳胶粒内部粘度很高,但由于连续相是水,使得整个体系粘度并不高,并且在反应过程中体系的粘度变化也不大,这样的体系由内向外传热就很容易,不会出现局部过热,更不会暴聚,同时低粘度体系容易搅拌,便于管道输送,容易实现连续化操作。
乳液聚合能够满足高反应速率和高分子量聚合产物的要求。高的反应速率会使生产成本降低,而高的分子量则是生产高弹性合成橡胶所必需的。
乳液过程大多数是以水作介质,避免了采用昂贵的溶剂以及回收溶剂的麻烦,同时减少了引起火灾和污染的可能性。再者,如水乳胶、粘合剂、皮革、纸张、织物处理以及乳液泡沫橡胶等,均可直接使用乳液,明显改善了施工环境。
在需要固体聚合物的情况下,需经凝聚、洗涤、脱水、干燥等一系列后处理工序,才能将聚合物从乳液中分离出来,这就要增加成本。
产品中乳化剂残留,会使产物的电性能和耐水性下降。乳液聚合的多变性,使操作难度增大。由于加入了溶剂或介质而减少了反应器的有效利用空问。【2】
乳液聚合的优缺点
乳液聚合有很多优点:以水作介质,环保安全污染小;胶乳粘度低,易散热,便于混合传热、管道传送和连续生产;聚合速率快,可在较低的温度下聚合,同时产物分子量高;胶乳可直接使用,如水乳漆,粘结剂,纸张,织物,皮革的处理计等。
乳液聚合也有若干缺点:需要固体产品时,胶乳须经凝聚、洗涤、脱水、干燥等多道工具,成本较高;产品中留有乳化剂杂质,难以完全消除,有损电能。
2.乳液聚合最新研究进展
随着高分子合成技术的不断发展,特别是二十世纪70年代以来,四大传统自由基聚合方法的不断进步和改进,乳液聚合也诞生出了多种合成新技术。
核壳乳液聚合
核壳结构乳液(Coreshell Emulsion Polymerization属于异种分子复合乳液,乳液颗粒内部的内侧和外侧分别富集不同种成分,通过核、壳的不同组合,得到一系列不同形态的非均
相粒子,使其具有一般无规共聚物、机械共混物难以拥有的优异性能。【3】根据壳层单体不同的加入方式,核壳乳液聚合方法可分为间歇法、半连续法和预溶胀法。间歇法是按配方将种子乳液、单体、水及补加的乳化剂同时加入反应器中,然后加入引发剂进行壳层聚合;半连续法是将引发剂加入种子乳液后,壳层单体以一定的速度恒速滴加,导致聚合期间没有充足的单体;预溶胀法是将单体加入到乳液体系中,在一定温度下溶胀一定时间,然后引发聚合。袁显永等的研究表明:温度对核壳型胶乳的成膜及其性能有重要影响,升高温度能加快胶乳的成膜速率。【5】
郭天瑛,陈熙,郝广杰,宋谋道,张邦华通过种子乳液聚合法制备了以丙烯酸丁酯-苯乙烯共聚物为核,甲基丙烯酸甲酯-苯乙烯-乙烯基三乙氧基硅烷为壳的水性自交联乳液,通过用旋转黏度仪研究了乳液的流变性能对所得乳胶膜进行了交联度和力学性能的研究,结果发现随着含乙烯基三乙氧基硅烷量的增大,其交联度明显提高,PH值越小,膜的交联越充分,力学强度越高;核-壳组分质量比越小,乳胶膜的拉伸强度越大。【10】
互穿聚合网络
互穿聚合物网络(Inter penetrating Polymer Net—work,简称IPN)是由两种或两种以上分别形成的聚合物通过大分子链段间永久缠结或相互贯穿形成的具有特殊结构的聚合物合金。理想的IPN体系是各自形成聚合物网络在分子水平上的互穿,而实际上因为聚合物长链的混合熵极小,多数呈相分离状态,互穿结构仅发生在相交界处。吴明红等用顺序IPN方法合成了核一壳结构的P(BA—MMA)伊(EA—AA~NMA)复合乳胶,结果表明:辐射引发乳液聚合可制得核一壳界面明显且相分离完全的复合乳胶,所得复合乳胶的拉伸强度、伸长率、耐水压、稳定性、成膜性等都得到了很大的改善和提高【4】;单海峰61利用乳液聚合技术制备了PST/PBA胶乳型互穿聚合物网络,研究结果表明:采用配比为4/1的SDS/OP一10复合乳化剂,当乳化剂、引发剂、交联剂DVB、交联剂EGDM用量分别为2%~3%、0.4%、0.5%、0.6%,采用平衡溶胀法加入壳层组分,可获得涂料用性能优良的PST/PBA UPN复合乳液;韩怀芬等采用种子乳液聚合技术,合成了Ps/PBA/P(BA—AA)胶乳型互穿网络聚合物,结果表明:以二乙烯基苯为交联剂,苯乙烯乳液聚合反应速率Roc[E][I],透射电镜观察表明,合成的聚合物具有明显的核壳结构,且粒径均匀。【6】
2.3无皂乳液聚合
无皂乳液聚合(Emulsifier-free Emulsion Polymerization,EFEP)是指不含乳化剂或仅含少量乳化剂且浓度小于临界胶束浓度(CMC)的聚合方法。无皂乳液聚合中的乳化剂是聚合过程中形成的双亲性(或亲水性)低聚物,或是用非极性单体与含表面活性基的单体共聚形成的两性聚合物。【11】
传统乳液聚合的产物中残留有乳化剂,一方面导致高分子材料的耐水性及其表面光泽性下降。另一方面也造成了环境的污染,人们试图用少量乳化剂或不加乳化剂的方法进行乳液聚合,由此产生了无皂乳液聚合。唐宏科等以P(VAC/AANA)两亲聚合物为乳化剂、醋酸乙烯酯和丙烯酸丁酯的单体配比为70:30、引发剂为单体用量的0.5%、乳化剂为单体总质量的3%、反应温度为70℃、反应时间为3.5 h、再保温1 h、实验得到的无皂聚(丙烯酸丁酯/乙酸乙烯酯)乳液固含量高、黏度大、稳定性好、具有良好的乳液性能。【7】
范昕,张晓东以丙烯酸酯类单体、苯乙烯、苯乙烯磺酸钠、有机硅类单体为原料,采用无皂乳液的聚合方法,使有机硅与丙烯酸树脂通过化学键连接,通过对不同单体的优化组合,合成了性能优良、稳定的无皂硅丙乳液。讨论了苯乙烯磺酸钠的用量、滴加速度、水性功能单体种类以及有机硅功能单体种类和用量对乳液性能的影响。结果表明:以丙烯酰
胺为水性功能单体,当苯乙烯磺酸钠、乙烯基三异丙氧基硅烷用量分别为总量的%和3%,原料滴加时间为5小时,制得的无皂硅丙乳液性能最佳。【12】
于双武,张宝莲,魏冬青,刘忠义采用种子乳液法,以反应性表面活化剂十一烯酸钠为表面活性单体,过硫酸钾,亚硫酸氢钠为氧化还原引发体系,进行丙烯酸酯无皂乳液聚合以及有机硅改性丙烯酸酯无皂乳液聚合研究。研究结果表明,当十一烯酸钠用量为3%、反应温度为70℃时,丙烯酸酯乳液有很好的聚合稳定性和贮存稳定性。有机硅改性丙烯酸酯乳液相对较难合成,但在氧化还原条件下,可以得到稳定的无皂硅丙乳液。透射电镜表明,有机硅先加法得到的乳胶粒子为均匀的球形核壳结构,而有机硅后加法得到的乳胶粒子形状不规则。无皂乳液比相应的有皂乳液耐水性好。制得的高性能硅丙乳液比一般乳液性能大大提高.【20】
2.4微乳液聚合
微乳液聚合(Microemuision Polymerization)一般而言需首先将单体、分散介质、乳化剂及各种辅助剂等配制成一定类型的微乳液,然后再采用热引发、辐射、光照等适当的方法引
发单体聚合,最终趋向于形成均匀透明或半透明、粒径在10~100 nm稳定的聚合物分散体系。微乳液聚合成核的场所主要在单体液滴中,也可以通过均相成核。在反应后期,胶束也成为成核的重要场所,聚合物粒子与含单体的胶束相互碰撞融合,进一步促进了单体的增长。微乳液聚合产物的组成与转化率无关,说明反应场所的单体比例与共聚物分子的序列分布近似于伯努利分布,并产生均一的微结构f131。刘祥等,通过反相微乳液聚合反应制得了质量分数为3l%、相对分子质量为6.8×106、透明、稳定的P(AM—co—AMPS)反相微乳胶,结果表明:P(AM—co—AMPs)反相微乳胶的驱油效率高于与之相对分子质量相当的PAM反相微乳胶;张翠梅【8】用改进的微乳液聚合方法,合成出聚合物,乳化剂大于15:1、粒径尺寸为34.3nm、多分散性为0.176的纯丙微乳液,并考察了聚合工艺,结构表明:聚合过程中要缓慢搅拌并严格控制滴加速度。

本文发布于:2024-09-20 22:36:23,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/408677.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:乳液聚合   乳液   单体   聚合   乳化剂
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议