基本飞行原理:飞机的稳定性和操纵性

基本飞行原理:飞机稳定性和操纵性
一架飞机,除了能产生足够的升力平衡重力、有足够的推力克服阻力以及具有良好飞行性能之外,还必须具有良好的稳定性和操纵性,才能在空中飞行。否则,如果飞机的平衡特性、稳定特性和操纵特性不好,也就是说在飞行中,飞机总是偏离预定的航向;或者稍受外界偶然的扰动,飞机的平衡即遭破坏而又不能自动恢复,需要飞行员经常花费很大的精力予以纠正;在改变飞行状态的时候,飞行员操纵起来非常吃力,而且飞机反应迟钝,那么像这样的飞机就不能算是一架战术/使用性能良好的飞机。驾驶这样的飞机,驾驶员会被搞得精疲力尽,而且不能保证飞行安全和很好地完成预定任务。因此对于一架战术/使用性能优良的飞机来说,不仅要求它速度大、爬升快、升限高、航程远,而且要求具备良好的平衡性、稳定性和操纵性。
飞机的平衡
飞机在飞行时,所有作用于飞机的外力与外力矩之和都等于零的状态称之为飞机的平衡状态。等速直线运动是飞机的一种平衡状态。
按照机体坐标轴系,可以将飞机的平衡分为三个方向的平衡:纵向平衡、横向平衡和方向平衡。飞机在纵向平面内作等速直线飞行,并且不绕横轴转动(俯仰)的运动状态,称为纵向平衡;飞机作等速直线飞行,并且不绕纵轴转动(滚转)的飞行状态,称为横向平衡。飞机作等速直线飞行,并且不绕立轴转动(偏航)的飞行状态,称为方向平衡。
飞机在飞行中,其平衡状态不是一成不变的,经常会因为各种因素(如燃油消耗、收放起落架、收放襟翼、发动机推力改变或投掷等)的影响而遭到破坏,从而使飞机的平衡状态发生变化。此时,驾驶员可以通过偏转相应的操纵面来保持飞机的平衡,称为配平。
飞机的稳定性
对于飞机的配平而言,不平衡的力矩是由一些长久作用的因素(如单台发动机停车)造成的,因而驾驶员适当的偏舵就可以克服。但除此之外,飞机在飞行过程中,还常常会碰到一些偶然的、瞬时作用的因素,例如突风的扰动或偶而触动一下驾驶杆或脚蹬等,也会使飞机的平衡状态遭到破坏。并且,在这种情况下,飞机运动参数的变化比较剧烈,驾驶员很难加以控制,会影响预定任务的完成和飞行的安全。因此便对飞机本身提出了稳定性的要求。
 2.4.8 圆球的3种稳定状态
(a) 稳定  (b) 不稳定  (c) 中立稳定
所谓稳定性,指飞机在飞行中偶然受外力干扰后不需要驾驶员的干预,靠自身特性恢复原来状态的能力。
为了更好地说明稳定性的概念和分析具备稳定性的条件,首先来研究圆球的稳定问题。如图 2.4.8所示的3种情况,设圆球原来处于平衡状态。现在给它一个瞬时小扰动,例如推它一下,使其偏离平衡状态,我们来讨论在扰动去除后,圆球是否能回到原来的平衡状态。
 2.4.8(a)所示的圆球,在扰动取消后,其在弧形槽中经过若干次来回摆动,最后自动地恢复到原来的平衡位置,这种情况称为稳定;图2.4.8(b)所示的圆球,在扰动取消后,其沿
弧形坡道滚下,离原来的平衡位置越来越远,不能自动地恢复到原来的平衡位置,这种情况称为不稳定;图2.4.8(c)所示的圆球,在扰动取消后,就停在扰动消失时的位置,既不继续偏离原来的平衡位置,也不自动地恢复到原来的平衡位置,这种情况称为中立稳定或随遇稳定。
为什么会出现这些现象呢? (1) 图 2.4.8(a)所示的圆球偏离平衡位置后,其重力在平行于弧形曲线切线的方向上的分力,对圆球与弧形曲线的接触点(支持点)形成一个力矩,该力矩使圆球具有自动恢复到其原来平衡状态的趋势。这种力矩称为稳定力矩或恢复力矩。同时,圆球在弧形曲线上运动的阻力也对其支持点形成一个力矩,但其方向和圆球运动方向相反,起到阻止摆动的作用,称为阻转力矩或阻尼力矩,在此力矩作用下,圆球的摆幅越来越小,最后停止在原来的平衡位置上,因而是稳定的。(2) 图2.4.8(b)所示的圆球偏离平衡位置后,其重力在平行于弧形曲线切线的方向上的分力,对圆球与弧形曲线的接触点(支持点)形成一个力矩,该力矩使圆球继续偏离原来的平衡状态,是不稳定力矩。因此圆球不能自动回到原来的平衡位置上,因而是不稳定的。(3) 图2.4.8(c)所示的圆球偏离平衡位置后,其重力与平面的支持力在同一条直线上,对支持点不形成任何力矩,圆球既不继续加大偏离原来的平衡状态,也不会自动回到原来的平衡状态。
由此可知,欲使处于平衡状态的物体具有稳定性,其必要条件是物体在受到扰动后能够产生稳定力矩,使物体具有自动恢复到原来平衡状态的趋势;其次是在恢复过程中同时产生阻尼力矩,保证物体最终恢复到原来平衡状态。
对飞机来说,其稳定与否,和上述圆球的情况在实质上是类似的。如果在飞行中,飞机由于外界瞬时微小扰动而偏离了平衡状态,这时若在飞机上能够产生稳定力矩,使飞机具有自动恢复到原来平衡状态的趋势,同时在飞机摆动过程中,又能产生阻尼力矩,那么飞机就能像图 2.4.8(a)所示的圆球一样,无须驾驶员的干预就能自动地恢复到原来的平衡状态,因而是稳定的,或者说飞机具有稳定性;反之,若飞机偏离平衡状态后产生的是不稳定力矩,那么飞机就会像图2.4.8(b)所示的圆球一样越来越偏离原来的平衡位置,因而是不稳定的,也就是没有稳定性。显然,为了保证飞行安全和便于操纵,飞机应当具有良好的稳定性。
通常将稳定性分成静稳定性和动稳定性。如果飞机在外界瞬时扰动的作用下偏离平衡状态,在最初瞬间所产生的是恢复力矩,使飞机具有自动恢复到原来平衡状态的趋势,则称飞机具有静稳定性;反之,若产生的是不稳定力矩,飞机便没有自动恢复到平衡状态的趋
势,故称为没有静稳定性。静稳定性只表明飞机在外界扰动作用后的最初瞬间有无自动恢复到原来平衡状态的趋势,并不能说明飞机能否最终恢复到原来的平衡状态。研究飞机在外界瞬时扰动作用下,整个扰动运动过程的问题,称为飞机的动稳定性。
飞机的静稳定性和动稳定性之间有着非常密切的关系。一般来说,只要恰当地选择静稳定性的大小,就能保证获得良好的动稳定特性。限于课程性质,下面主要介绍飞机的静稳定性问题。
飞机的静稳定性也可分为纵向静稳定性、横向静稳定性和方向静稳定性。
飞机的纵向稳定
飞行中,当飞机受到微小扰动而偏离其纵向平衡状态,并在扰动去除瞬间,飞机不经驾驶员操纵就具有自动地恢复到原来平衡状态的趋势,则称飞机具有纵向静稳定性。

本文发布于:2024-09-22 01:09:51,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/388121.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:飞机   稳定性   状态   圆球   飞行   力矩
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议