铸造技术发展历程

球墨铸铁铸造铸造技术的发展历程
铸造是人类掌握比较早的一种金属热加工工艺,已有约6000年的历史。中国约在公元前1700~前1000年之间已进入青铜铸件的全盛期,工艺上已达到相当高的水平。中国商朝的重875公斤的司母戊方鼎,战国时期的曾侯乙尊盘,西汉的透光镜,都是古代铸造的代表产品。早期的铸件大多是农业生产、宗教、生活等方面的工具或用具,艺术彩浓厚。那时的铸造工艺是与制陶工艺并行发展的,受陶器的影响很大。中国在公元前513年,铸出了世界上最早见于文字记载的铸铁件晋国铸型鼎,重约270公斤。欧洲在公元八世纪前后也开始生产铸铁件。铸铁件的出现,扩大了铸件的应用范围。例如在15~17世纪,德、法等国先后敷设了不少向居民供饮用水的铸铁管道。18世纪的工业革命以后,蒸汽机、纺织机和铁路等工业兴起,铸件进入为大工业服务的新时期,铸造技术开始有了大的发展。
进入20世纪,铸造的发展速度很快,其重要因素之一是产品技术的进步 ,要求铸件各种机械物理性能更好,同时仍具有良好的机械加工性能;另一个原因是机械工业本身和其他工业如化工、仪表等的发展,给铸造业创造了有利的物质条件。如检测手段的发展,保证了铸件质量的提高和稳定,并给铸造理论的发展提供了条件;电子显微镜等的发明,帮助人们深入到
金属的微观世界,探查金属结晶的奥秘,研究金属凝固的理论,指导铸造生产。 在这一时期内开发出大量性能优越,品种丰富的新铸造金属材料,如球墨铸铁,能焊接的可锻铸铁,超低碳不锈钢,铝铜、铝硅、铝镁合金,钛基、镍基合金等,并发明了对灰铸铁进行孕育处理的新工艺,使铸件的适应性更为广泛。 50年代以后,出现了湿砂高压造型,化学硬化砂造型和造芯,负压造型以及其他特种铸造、抛丸清理等新工艺,使铸件具有很高的形状、尺寸精度和良好的表面光洁度,铸造车间的劳动条件和环境卫生也大为改善。20世纪以来铸造业的重大进展中,灰铸铁的孕育处理和化学硬化砂造型这两项新工艺有着特殊的意义。这两项发明,冲破了延续几千年的传统方法,给铸造工艺开辟了新的领域,对提高铸件的竞争能力产生了重大的影响。 
铸造一般按造型方法来分类,习惯上分为普通砂型铸造和特种铸造。普通砂型铸造包括湿砂型、干砂型、化学硬化砂型三类。特种铸造按造型材料的不同,又可分为两大类:一类以天然矿产砂石作为主要造型材料,如熔模铸造、壳型铸造、负压铸造、泥型铸造、实型铸造、陶瓷型铸造等;一类以金属作为主要铸型材料,如金属型铸造、离心铸造、连续铸造、压力铸造、低压铸造等。 
    铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。 铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有合金。 
    金属熔炼不仅仅是单纯的熔化,还包括冶炼过程,使浇进铸型的金属,在温度、化学成分和纯净度方面都符合预期要求。为此,在熔炼过程中要进行以控制质量为目的的各种检查测试,液态金属在达到各项规定指标后方能允许浇注。有时,为了达到更高要求,金属液在出炉后还要经炉外处理,如脱硫、真空脱气、炉外精炼、孕育或变质处理等。熔炼金属常用的设备有冲天炉、电弧炉、感应炉、电阻炉、反射炉等。 
不同的铸造方法有不同的铸型准备内容。以应用最广泛的砂型铸造为例,铸型准备包括造型材料准备和造型造芯两大项工作。砂型铸造中用来造型造芯的各种原材料,如铸造砂、型砂粘结剂和其他辅料,以及由它们配制成的型砂、芯砂、涂料等统称为造型材料造型材料准备的任务是按照铸件的要求、金属的性质,选择合适的原砂、粘结剂和辅料,然后按一定的比例把它们混合成具有一定性能的型砂和芯砂。常用的混砂设备有碾轮式混砂机、逆流式混砂机和叶片沟槽式混砂机。后者是专为混合化学自硬砂设计的,连续混合,速度快。 
    造型造芯是根据铸造工艺要求,在确定好造型方法,准备好造型材料的基础上进行的。铸件的精度和全部生产过程的经济效果,主要取决于这道工序。在很多现代化的铸造车间里,造型造芯都实现了机械化或自动化。常用的砂型造型造芯设备有高、中、低压造型机、抛砂机、无箱射压造型机、射芯机、冷和热芯盒机等。 
铸件自浇注冷却的铸型中取出后,有浇口、冒口及金属毛刺披缝,砂型铸造的铸件还粘附着砂子,因此必须经过清理工序。进行这种工作的设备有抛丸机、浇口冒口切割机等。砂型铸件落砂清理是劳动条件较差的一道工序,所以在选择造型方法时 ,应尽量考虑到为落砂清理创造方便条件。有些铸件因特殊要求,还要经铸件后处理,如热处理、整形、防锈处理、粗加工等。 
    铸造是比较经济的毛坯成形方法,对于形状复杂的零件更能显示出它的经济性。如汽车发动机的缸体和缸盖,船舶螺旋桨以及精致的艺术品等。有些难以切削的零件 ,如燃汽轮机的镍基合金零件不用铸造方法无法成形。 
    另外,铸造的零件尺寸和重量的适应范围很宽,金属种类几乎不受限制;零件在具有一般机械性能的同时,还具有耐磨、耐腐蚀、吸震等综合性能,是其他金属成形方法如锻、
轧、焊、冲等所做不到的。因此在机器制造业中用铸造方法生产的毛坯零件,在数量和吨位上迄今仍是最多的。 
    铸造生产有与其他工艺不同的特点,主要是适应性广、需用材料和设备多、污染环境。铸造生产会产生粉尘、有害气体和噪声对环境的污染,比起其他机械制造工艺来更为严重,需要采取措施进行控制。 
    铸造产品发展的趋势是要求铸件有更好的综合性能,更高的精度,更少的余量和更光洁的表面。此外,节能的要求和社会对恢复自然环境的呼声也越来越高。为适应这些要求,新的铸造合金 玫娇 ⅲ 绷缎鹿ひ蘸托律璞附 嘤Τ鱿帧?nbsp;
    铸造生产的机械化自动化程度在不断提高的同时,将更多地向柔性生产方面发展,以扩大对不同批量和多品种生产的适应性。节约能源和原材料的新技术将会得到优先发展,少产生或不产生污染的新工艺新设备将首先受到重视。质量控制技术在各道工序的检测和应力测定等方面,将有新的发展。
    铸造工作者在电子技术和测试手段不断进步的条件下,将对金属结晶凝固和型砂紧实等
理论进行更深入的探索,以研究提高铸件性能和内部质量的有效途径。机器人和电子计算机在铸造生产和管理领域里的应用,也将日益广泛。
特种铸造
  铸造是一种液态金属成型的方法。在各种铸造方法中,用得最普遍的是砂型铸造。这是因为砂型铸造对铸件形状、尺寸、重量、合金种类、生产批量等几乎没有限制。
  但随着科学技术的发展,对铸造提出了更高的要求,要求生产出更加精确、性能更好、成本更低的铸件。为适应这些要求,铸造工作者发明了许多新的铸造方法,这些方法统称为特种铸造方法,即特种铸造。
  1.特种铸造方法
  常用的特种铸造方法有熔模精密铸造、石膏型精密铸造、陶瓷型精密铸造、消失模铸造、金属型铸造、压力铸造、低压铸造、差压铸造、真空吸铸、挤压铸造、离心铸造、连续铸造、半连续铸造、壳型铸造、石墨型铸造、电渣熔铸等。
  2.基本特点
  (1)改变铸型的制造工艺或材料
  (2)改善液体金属充填铸型及随后的冷凝条件
  以上两方面为特种铸造的基本特点,对于每一种特种铸造方法,它可能只具有某一方面的特点,也可能同时具有两方面的特点。如压力铸造、采用金属型或熔模型壳的低压铸造、采用石膏型的差压铸造、离心铸造等均具有两方面的特点;而陶瓷型精密铸造、消失模铸造等只是改变了铸型的制造工艺或材料,金属液充填过程仍是在重力作用下完成的。
  3.特种铸造的优点
  (1)铸件尺寸精确,表面粗糙值低,更接近零件最后尺寸,从而易于实现少切削或无切削加工。
  (2)铸件内部质量好,力学性能高,铸件壁厚可以减薄。
  (3)减低金属消耗和铸件废品率。
  (4)简化铸造工序(除熔模铸造外),便于实现生产过程的机械化、自动化。
  (5)改善劳动条件,提高劳动生产率。
特种铸造的发展前景
特种铸造作为铸造行业的重要组成部分,近些年来得到了飞速的发展,其提供的高性能,优质的精确铸件成为汽车、航天航空等重要行业不可缺少的成型方法。对精确铸件需求的不断增加直接推动着特种铸造设备的发展我国的铸造企业约有24000家,与发达国家相比企业多,专业化程度低,集约化程度低,劳动生产率也较低。我国平均每年每人产出10吨,个别劳动生产率高的为30吨。美国、德国则为46吨到60吨,日本为60吨到85吨,差距是明显的。我国平均每厂年产铸件500多吨,而日本则为4700吨,德国为4300吨,美国为4280吨。铸造机械化水平和模具精度、性能、配套性、可靠性水平比发达国家低得多,许多关键件、模具需要进口。
    “产学研”结合是我国铸造设备发展的关键的环节。在现时的知识经济时代,唯有通过三者的结合才能将最新的科技成果迅速地转化为生产力,或者自主知识产权,增强自身在国际市场的竞争力,在激烈的竞争中占有一席之地。在这一方面我们尚有大量工作要做。
21世纪初切削加工技术发展的主要趋势
切削加工作为制造技术的主要基础工艺,随着制造技术的发展,在20世纪末也取得了很大的进步,进入了以发展高速切削、开发新的切削工艺和加工方法、提供成套技术为特征的发展新阶段。它是制造业中重要工业部门,如汽车工业、航空航天工业、能源工业、军事工业和新兴的模具工业、电子工业等部门主要的加工技术,也是这些工业部门迅速发展的重要因素。因此,在制造业发达的美、德、日等国家保持着快速发展的势头。 
  金属切削刀具作为数控机床必不可少的配套工艺装备,在数控加工技术的带动下,进入了“数控刀具”的发展阶段,显示出“三高一专”(即高效率、高精度、高可靠性和专用化)的特点。 
  显而易见,在21世纪初,尽管近净成形技术、堆积成形技术是非常有前途的新工艺,但切削加工作为制造技术主要基础工艺的地位不会改变。从当前制造业发展的趋势中可以看到,制造业发展和人类社会进步对切削加工提出的双重挑战,这也是21世纪初切削加工技术发展的主要趋势。 
  高速切削将成为新工艺 
  当前以高速切削为代表的干切削、硬切削等新的切削工艺已经显示很多的优点和强大的生命力,成为制造技术提高加工效率和质量、降低成本的主要途径。 
  因此,发展高速切削等新的切削工艺促进制造技术的发展是现代切削技术面临的新任务。当代的高速切削不是切削速度的少量提高,是需要在制造技术全面进步和进一步创新的基础上,包括数控机床、刀具材料、涂层、刀具结构等技术的重大进步,才能达到的切削速度和进给速度的成倍提高,才能使制造业整体切削加工效率有显著的提高。 
  把当前的高速切削水平实用化,使我国机加工整体切削效率提高1~2倍,缩小与工业发达国家的差距,是我国从事切削加工与刀具技术的专业人员在新世纪的努力目标和面临的重大挑战。 

本文发布于:2024-09-22 22:22:15,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/379758.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:铸造   铸件   金属
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议