用于产生氮和氩的低温空气分离单元的集成式氮液化器的制作方法



1.本发明涉及增强从生产氮和氩的低温空气分离单元中对液氮的回收,并且更具体地说,涉及一种能够在无液氮模式、低液氮模式和高液氮模式下操作的集成式氮液化器


背景技术:



2.电子工业中的工业气体客户经常寻求体积和压力下的氩和氮产品分布,其通常从低温空气分离单元产生,如技术出版物cheung,moderate pressure cryogenic air separation process,gas separation&purification,vol 5,march 1991和美国专利号4,822,395(cheung)中公开的。类似地,2018年4月25日提交的美国专利申请序列号15/962205;15/962245;15/962292;和15/962358,以及2019年10月24日提交的美国专利申请序列号16/662193公开了新型空气分离循环,该新型空气分离循环代表对cheung公开的系统的改进。对产生中压氩和氮的空气分离单元的这种改进使用取自低压塔的富氧流作为氩冷凝器中的冷凝介质,以冷凝富氩流,从而改进氩回收和氮回收。然而,这些新颖的空气分离循环通常是纯气体设备,在需要大量液氮生产的低温空气分离应用以及需要可变液氮生产的低温空气分离应用中,这些设备可能在操作上受到限制。
3.虽然许多电子工业应用专注于纯气体空气分离单元设计,但是一些客户寻求进一步的产品要求,这些要求可以包括一些氧气生产(以液体和/或气态形式)以及液氮备用。传统上,使用氧和液氮的次级来源来满足此类附加的产品要求。
4.需要一种能够提供基础氩和氮产品以及氧和液氮产品的低温空气分离设备。此类空气分离单元应优选地具有在仅氩气和氮气模式下和在一种或多种液氮模式(包括高液氮模式)下在进入空气的高达约10%的液体制造速率下操作的灵活性。换句话说,需要进一步改进生产氩和氮的中压低温空气分离单元和循环,以有效地生产可变量的液氮,同时保持从低温空气分离单元的冷箱内的蒸馏塔系统中进行总体高氮回收和高氩回收。


技术实现要素:



5.本发明可以表征为一种空气分离单元,该空气分离单元包括(i)主空气压缩系统,该主空气压缩系统被构造用于接收进入的进料空气流并且产生经压缩的空气流;(ii)基于吸附的预纯化器单元,该基于吸附的预纯化器单元被构造用于从该经压缩的空气流中去除水蒸气、二氧化碳、一氧化二氮和碳氢化合物并产生经压缩且纯化的空气流;(iii)主热交换系统,该主热交换系统被构造成将经压缩且纯化的空气流冷却到适于分馏的温度;(iv)蒸馏塔系统,该蒸馏塔系统具有经由冷凝器-再沸器以热传递关系联结的高压塔和低压塔,该蒸馏塔系统还包括与低压塔操作地联接的氩塔布置,该氩塔布置具有至少一个氩塔和氩冷凝器,该蒸馏塔系统被构造用于接收经冷却、压缩且纯化的空气流并从低压塔产生至少两个或更多个富氧流;氩产物流、气态氮产物流;和(v)氮液化器,该氮液化器包括氮进料压缩机;氮再循环压缩机;热增压压缩机、加载增压器的热涡轮、冷增压压缩机和加载增压器的冷涡轮,并且与主热交换系统和蒸馏塔系统成一体,并且其中氮液化器被布置或构造成
接收气态氮产物流的一部分并产生液氮产物流。
6.另选地,本发明可以表征为一种分离空气的方法,该方法包括以下步骤:(a)在主空气压缩系统中压缩进入的进料空气流以产生经压缩的空气流;(b)在基于吸附的预纯化器单元中纯化经压缩的空气流以产生经压缩且纯化的空气流;(c)在主热交换系统中将经压缩且纯化的空气流冷却至适于分馏的温度;(c)在蒸馏塔系统中分馏经冷却、压缩且纯化的空气流,该蒸馏塔系统具有经由冷凝器-再沸器以热传递关系联结的高压塔和低压塔,该蒸馏塔系统还包括与低压塔操作地联接的氩塔布置,该氩塔布置具有至少一个氩塔和氩冷凝器,该蒸馏塔系统被构造成从低压塔产生至少两个或更多个富氧流;氩产物流、气态氮产物流;和(e)在氮液化器中液化气态氮产物流的一部分,该氮液化器包括氮进料压缩机;氮再循环压缩机;热增压压缩机、加载增压器的热涡轮、冷增压压缩机和加载增压器的冷涡轮,并且与主热交换系统和蒸馏塔系统成一体,并且其中氮液化器被布置或构造成接收气态氮产物流的一部分并产生液氮产物流。
7.在系统和方法两者中,该氮液化器被构造成以三种模式操作,该三种模式包括:(1)不存在液氮模式,其中气态氮产物流中没有一个部分被转移到氮液化器并且在氮液化器中没有液氮产物流产生;(2)低液氮模式,其中气态氮进料流绕过氮进料压缩机并且转移到氮再循环压缩机;和(3)高液氮模式,其中气态氮进料流被引导至氮液化器的氮进料压缩机。本发明的系统和方法的特征还在于来自低压塔的富氧流中的至少一个富氧流是被引导至氩冷凝器的富氧冷凝介质。
8.最后,本发明可以表征为一种氮液化器,该氮液化器被构造成与产生氩和氮的低温空气分离单元成一体,该氮液化器包括:(i)由低温空气分离单元产生的气态氮产物流和按体积计占气态氮产物流的1%至10%的气态氮进料流;(ii)氮进料压缩机,该氮进料压缩机被构造成经由第一流量控制阀接收气态氮进料流并压缩气态氮进料流;(iii)氮再循环压缩机,该氮再循环压缩机被构造成氮进料压缩机接收经压缩的气态氮进料流或经由第二旁通阀接收气态氮进料流,并且进一步压缩所接收的料流;(iv)热增压压缩机,该热增压压缩机被构造成仍进一步压缩经进一步压缩的热氮流的第一部分以产生冷氮流;(v)冷增压压缩机,该冷增压压缩机被构造成进一步压缩冷氮流以产生初级氮液化流;(vi)加载增压器的热涡轮,该加载增压器的热涡轮被构造成使经进一步压缩的热氮流的第二部分膨胀以产生热再循环流;(vii)加载增压器的冷涡轮,该加载增压器的冷涡轮被构造成使初级氮液化流的再循环部分膨胀并产生冷再循环流;和(viii)热交换器,该热交换器被构造成通过与热再循环流和冷再循环流的间接热交换来冷却初级氮液化流以产生液氮产物流,其中热再循环流和冷再循环流在离开热交换器之后再循环回到再循环压缩机。
附图说明
9.虽然本发明的结论是申请人视为他们的发明内容且清楚地指出发明主题的权利要求,但相信本发明在结合附图考虑时将得到更好的理解,其中:
10.图1是能够在中压下操作并具有高氮回收和高氩回收的低温空气分离单元的示意性工艺流程图;并且
11.图2是被构造成与图1的低温空气分离单元成一体的氮液化器的局部示意性工艺流程图。
具体实施方式
12.本发明公开的系统和方法提供了在带有集成式氮液化器的中压空气分离单元中对空气进行低温分离,该中压空气分离单元特征在于对氮的非常高的回收、对氩的高回收,并且被构造成在无液氮模式、低液氮模式和高液氮模式下有效地操作。
13.如下文更详细地讨论的,所公开的低温空气分离单元包括三个塔布置,并且通过使用取自低压塔的高纯度富氧流的一部分或取自低压塔的较低纯度的富氧流作为氩冷凝器中的冷凝介质而冷凝富氩流,来实现高氩回收和氮回收。然后使用来自氩冷凝器的富氧汽化物作为吹扫气体,以使基于吸附的预纯化器单元中的吸附剂床再生。所公开的空气分离系统和方法进一步能够进行如以下段落中所述的有限的氧生产以及可变液氮生产。
14.中压空气分离单元中的氮、氩和氧的回收
15.转到图1,示出了具有高氮回收和氩回收的产生氩和氮的低温空气分离单元10的示意图。
16.从广义上讲,所描绘的空气分离单元包括主进料空气压缩机组或系统20、涡轮空气回路30、任选的增压器空气回路40、初级换热器系统50以及蒸馏塔系统70。如本文所用,主进料空气压缩机组、涡轮空气回路和增压器空气回路共同构成“热端”空气压缩回路。类似地,主换热器、基于涡轮的制冷回路的部分和蒸馏塔系统的部分被称为通常容纳绝缘冷箱中的“冷端”设备。
17.在图1中所示的主进料压缩机组中,进入的进料空气22通常被抽吸穿过空气吸滤器外壳(asfh)并且在多级中间冷却的主空气压缩机布置24中被压缩至可介于约6.5巴(a)至约11巴(a)之间的压力。该主空气压缩机布置24可包括串联或并联布置的整体齿轮式压缩机级或直接驱动压缩机级。离开主空气压缩机布置24的经压缩的空气流26被进料至具有一体式除雾器的后冷却器(未示出),以移除进入的进料空气流中的游离水分。通过用冷却塔水冷却经压缩进料空气,在后冷却器中将来自主空气压缩机布置24的最后压缩级的压缩的压缩热移除。来自该后冷却器以及主空气压缩布置24中的一些中间冷却器的冷凝物优选地输送到冷凝物罐,并且用于向空气分离设备的其他部分供应水。
18.然后将冷却且干燥的经压缩空气流26在预纯化单元28中纯化以从该冷却且干燥的经压缩空气进料中移除高沸点污染物。如本领域所熟知,预纯化单元28通常包含根据变温吸附循环操作的氧化铝和/或分子筛的两个床,在该变温吸附循环中水分及其他杂质(诸如二氧化碳、水蒸气和烃类)被吸附。这些床中的一个床用于预纯化该冷却且干燥的经压缩空气进料,而另一个床是优选地利用来自空气分离单元的废氮的一部分再生的。这两个床定期交换功用。在设置在预纯化单元28下游的粉尘过滤器中,从经压缩、预纯化的进料空气中移除颗粒以产生经压缩、纯化的空气流29。
19.经压缩并且纯化的空气流29在包括高压塔72、低压塔74和氩塔129的多个蒸馏塔中被分离为富氧馏分、富氮馏分和富氩馏分。然而,在这种蒸馏之前,通常将经压缩且预纯化的空气流29分成多个进料空气流,该多个进料空气流可包括锅炉空气流和涡轮空气流32。可将锅炉空气流在增压压缩机布置中进一步压缩,随后在后冷却器中冷却以形成增压空气流360,然后在主换热器52中将该增压空气流进一步冷却。优选地通过与包括氧流197、386的加热流以及来自蒸馏塔系统70的氮流195的间接换热来在主换热器52中完成对空气流的冷却或部分冷却,以产生经冷却的进料空气流。
20.使经部分冷却的进料空气流38在涡轮35中膨胀,以产生被引导至低压塔74的排气流64。用于空气分离单元10的致冷的一部分通常也由涡轮35产生。完全冷却的空气流47以及高压空气流被引入高压塔72中。任选地,不在涡轮进料流38中抽出涡轮空气回路30中流动的小部分空气。在换热器52的冷端处抽出任选的增压流48,使该增压流完全或部分冷凝,在阀49中降低压力,并且在离塔底若干级处进料至高压塔72。仅在所泵送的氧流386的大小足够高时利用流48。
21.主换热器52优选地为钎焊铝制板翅式换热器。此类换热器是有利的,因为它们具有紧凑设计、高传热速率,而且它们能够处理多个流。它们被制造为完全钎焊和焊接的压力容器。对于小型空气分离单元而言,具有单个芯的换热器可能已足够。对于处理较高流量的较大空气分离单元而言,换热器可由必须并联或串联连接的若干芯构造而成。
22.基于涡轮的制冷回路通常被称为下塔涡轮(lct)布置或上塔涡轮(uct)布置,其用于向双塔或三塔低温空气蒸馏塔系统提供制冷。在图1所示的uct布置中,经压缩且经冷却的涡轮空气流32优选地在约6巴(a)至约10.7巴(a)之间的压力下。将经压缩、冷却的涡轮空气流32引导至或引入主换热器或初级换热器52中,在其中将该经压缩、冷却的涡轮空气流部分冷却至约140k至约220k之间的范围内的温度以形成经部分冷却、压缩的涡轮空气流38,该经部分冷却、压缩的涡轮空气流被引入涡轮35中以产生冷排气流64,该冷排气流随后被引入蒸馏塔系统70的低压塔74中。由该流38的膨胀而产生的补充制冷由此被直接施加到低压塔72,从而减轻了主换热器52的一些冷却负荷。在一些实施方案中,涡轮35可与用于直接或通过适当的齿轮装置进一步压缩涡轮空气流32的增压压缩机34联接。
23.虽然图1中所示的基于涡轮的制冷回路被示出为上塔涡轮(uct)回路(其中涡轮排气流被引导至低压塔),但可设想到基于涡轮的制冷回路另选地可为下塔涡轮(lct)回路或部分下塔涡轮(plct)(其中膨胀的排气流被进料至蒸馏塔系统70的高压塔72)。更进一步,基于涡轮的制冷回路可以是本领域技术人员通常已知的lct布置、uct布置和/或热再循环涡轮(wrt)布置的某种变型或组合。
24.在包括高压塔72、低压塔74、氩塔129、冷凝器-再沸器75和氩冷凝器78的蒸馏塔系统70内分离进入的进料空气流的上述组分(即,氧、氮和氩)。高压塔72通常在约6巴(a)至约10巴(a)之间的范围内操作,而低压塔74在约1.5巴(a)至约2.8巴(a)之间的压力下操作。高压塔72和低压塔74优选地以热传递关系相连,使得从接近高压塔72的顶部提取为流73的富氮蒸气塔顶馏出物的全部或一部分在位于低压塔74的基部的冷凝器-再沸器75内因驻留在低压塔74的底部中的富氧液体塔底馏出物77而冷凝。富氧液体塔底馏出物77的沸腾引发在低压塔74内形成上升汽相。该冷凝产生液体含氮流81,该液体含氮流被分成干净搁板回流流83和富氮流85,该干净搁板回流流可用于回流低压塔74以引发这种低压塔74中下降液相的形成,并且该富氮流回流高压塔72。
25.经冷却的进料空气流47优选地是略高于其露点的蒸气空气流,但其可处于或略低于其露点,该经冷却的进料空气流被进料至高压塔中,从而因多个传质接触元件(被示出为塔盘71)内发生上升汽相与回流流85所引发的下降液相之间的传质而实现精馏。这产生了粗液氧塔底馏出物86(也称为釜液体,其作为流88取出)和富氮塔顶馏出物89(作为干净搁板液体流83取出)。
26.在低压塔中,上升汽相包括来自冷凝器-再沸器的汽化气体以及来自涡轮35的排
气流64,该排气流在过冷单元99b中过冷并且作为蒸气流引入在低压塔72的中间位置处。下降液体由氮回流流83引发,该氮回流流被送至过冷单元99a,其在此处过冷并且随后先在阀96中膨胀,再在接近低压塔的顶部的位置处引入至低压塔74。
27.低压塔74还设置有多个传质接触元件,这些接触元件可以是塔盘或规整填料或低温空气分离领域中的其他已知元件。低压塔74中的这些接触元件被示出为规整填料79。在低压塔74内发生的分离产生了富氧液体塔底馏出物77,该富氧液体塔底馏出物被提取为具有大于99.5%的氧浓度的富氧液体流377。低压塔还产生作为气态氮产物流95提取的富氮蒸气塔顶馏出物。
28.富氧液体流377可被分离成在泵385中泵送的第一富氧液体流380,并且所得的泵送氧流386被引导至主换热器52,其中它被加热以产生高纯度气态氧产物流390。富氧液体流377的第二部分被转移为第二富氧液体流90。第二富氧液体流90优选地经由泵180泵送,然后在过冷单元99b中经由与富氧废物流196进行间接换热而过冷,并且然后传递至氩冷凝器78,其中它用于冷凝取自氩塔129的塔顶123的富氩流126。如图1所示,过冷第二富氧液体流90的一部分或第一液氧流的一部分可作为液氧产物。然而,如图1所示的液氧产物185的提取不利地影响来自空气分离设备的氩和氮的操作效率和回收。替代地,一些实施例可以从冷凝器75上方的若干级的低压塔提取较低纯度的富氧流(未示出),以代替将高纯度富氧流的一部分视为冷凝介质来冷凝富氩流。
29.从氩冷凝器78汽化的蒸发的氧流是在过冷器99b内加热的富氧废物流196。将经加热的富氧废物流197引导至主换热器或初级换热器,然后用作吹扫气体以再生基于吸附的预纯化器单元28。另外,可从低压塔提取废物氮流93以控制气态氮产物流95的纯度。优选地将废物氮流93与过冷器99b上游的富氧废物流196合并。另外,在一些情况下,在可供使用的氧多于操作氩冷凝器78所需的氧时,通常在氩产量减少时,可需要蒸气废物氧流97。
30.从氩冷凝器容器120抽出液体流130,使该液体流穿过凝胶阱370并且返回至低压塔74的基部或基部附近。凝胶阱370用于移除原本可能积聚在系统中的二氧化碳、一氧化二氮和某些重质烃。另选地,可经由流130来抽出小流量作为来自系统的排放流,使得凝胶阱140被消除(未示出)。
31.优选地,图1中所示的氩冷凝器是降流氩冷凝器。降流构型使得冷凝流与沸腾流之间的有效温差(δt)更小。如上所指示,更小的δt可引起氩塔、低压塔和高压塔内降低的操作压力,这转换成产生各种产物流所需的功率减少以及氩回收率提高。降流氩冷凝器的使用还实现了塔级数量的潜在减少,特别是对于氩塔而言。从资本的角度来看,氩降流冷凝器的使用也是有利的,部分原因是本发明公开的空气分离循环中已经要求泵180。另外,由于液体流130已经提供离开氩冷凝器壳体的连续液体流,该液体流还提供再沸表面的必要润湿以防止氩冷凝器

蒸干’。
32.使氮产物流95穿过过冷单元99a以经由间接换热来使氮回流流83和釜液体流88过冷。如上所述,过冷氮回流流83在阀96中膨胀并被引入低压塔74的最高位置,而过冷釜液体流88在阀107中膨胀并被引入低压塔74的中间位置。在穿过过冷单元99a之后,经加热的氮流195在主换热器52内进一步加热以产生经加热的气态氮产物流295。
33.第一富氧液体流380的流量可为离开系统的总富氧流的多达约20%。该布置的氩回收率介于约75%和96%之间,这大于现有技术的中压空气分离系统。虽然未示出,但取自
参考图2更详细描述的氮液化器500或取自外部源(未示出)的液氮流400可与第二富氧液体流90和用于在氩冷凝器78中冷凝富氩流126的组合流组合,以增强氩回收。
34.在添加液氮的情况下,氩冷凝器中的沸腾制冷剂是液氧和液氮的混合物,并且通常比在以下美国专利申请序列号中公开的沸腾制冷剂更冷:15/962205;15/962245;15/962292;和15/962358。结果,蒸馏塔系统压力自然可以更低。换句话说,低温空气分离单元,并且具体地压缩机和蒸馏塔系统可以设计成利用这种较低的操作压力,这将导致总体功率节省。另选地,如果针对所需压力范围设计低温空气分离单元的压缩机和蒸馏塔不可取,则来自氩冷凝器的蒸发的废气可以在主换热器的热端进行背压。通过这种背压,氩冷凝器中的沸腾流体温度不会改变,并且蒸馏塔系统的压力也将保持不变。如果期望较高的液态氧生产不频繁或不连续,采用这种交替背压方法将是低温空气分离单元的可能操作方法。
35.现在转向图2,改进的低温空气分离单元的核心是将液化循环整合到仅含气体的氩和氮低温空气分离单元的主热交换系统和冷箱中。如此,集成式液化器可以是用于再装罐或备用目的的液氮产品的来源,并且还可以用于替换从蒸馏塔系统中的搁架转移管线中去除的任何液氮,以确保到低压蒸馏塔的氮回流与在空气分离循环根本不制造任何液氮情况下的氮回流相同。这确保了在氩回收和氮回收方面的蒸馏塔系统性能在高液氮模式、低液氮模式和无(不存在)液氮模式下大致相同。
36.在图2中更详细地示出了与上述空气分离单元相关联的集成式氮液化器500。如其中所见,氮液化器优选地包括氮进料压缩机404、氮再循环压缩机410、热增压压缩机420、冷增压压缩机430、加载增压器的热涡轮425、加载增压器的冷涡轮435、热交换器52、多个后冷却器405、411、421、431和至少两个阀,包括第一流量控制阀403和第二旁通阀407。
37.氮进料压缩机404被构造成经由第一流量控制阀403接收气态氮进料流402并压缩气态氮进料流以产生经压缩的气态氮进料流406。氮再循环压缩机410被构造成从氮进料压缩机404接收经压缩的气态氮进料流406或经由第二旁通阀407接收转移的气态氮进料流409,并且进一步压缩所接收的料流408以产生经进一步压缩的热氮流或排出物流。气态氮进料流402优选地按体积计占气态氮产物流295的约1%至10%,其中气态氮产物流298的其余部分作为气态氮产物被递送到终端用户客户。
38.热增压压缩机420设置在氮再循环压缩机410的下游并且被构造成仍进一步压缩经进一步压缩的热氮流的第一部分412以产生经进一步压缩的冷氮流422。冷增压压缩机430接收冷氮流422并且进一步压缩该冷氮流以产生初级氮液化流432,在热交换器52中液化该初级氮液化流以产生液氮产物流400,该液氮产物流优选地被引导至液氮储罐(未示出)或再循环回到空气分离单元的蒸馏塔系统。
39.加载增压器的热涡轮425操作地联接到热增压压缩机420并由该热增压压缩机驱动。加载增压器的热涡轮425使经进一步压缩的热氮流的第二部分414膨胀,该第二部分已经在热交换器52中被部分地冷却以产生热再循环流428。加载增压器的冷涡轮435操作地联接到冷增压压缩机430并由该冷增压压缩机驱动,并且被构造成使初级氮液化流432的在热交换器52中部分地冷却的转移的再循环部分434膨胀以产生冷再循环流438。热交换器52进一步布置成通过与热再循环流428和冷再循环流438的间接热交换来冷却初级氮液化流432,以产生液氮产物流400,同时热再循环流428和冷再循环流438在离开热交换器52的热端之后作为再循环流440返回到再循环压缩机410。
40.本发明的氮液化器500被构造成在至少三种不同操作模式下操作,该操作模式包括第一不存在液氮模式,其中第一流量控制阀403和第二旁通阀407均定向在闭合位置,使得气态氮产物流295中没有一部分被转移到氮液化器,并且在氮液化器中没有液氮产物流产生。第二操作模式是低液氮模式,其中第一流量控制阀403定向在闭合位置,并且第二旁通阀407定向在打开位置,使得气态氮产物流295的一部分作为气态氮进料流409转移到氮再循环压缩机410并绕过氮进料压缩机404。第三操作模式是高液氮模式,其中第一流量控制阀403定向在打开位置,并且第二旁通阀407定向在闭合位置,使得气态氮产物流295的一部分作为气态氮进料流402转移到氮进料压缩机404。在低液氮操作模式下,气态氮产物流的被转移到氮再循环压缩机410的部分按体积计介于气态氮产物流295的约1%与5%之间。然而,在高液氮操作模式下,气态氮产物流295的被转移到氮进料压缩机410的部分按体积计介于气态氮产物流295的约5%与10%之间。
41.在不存在液氮模式下,空气分离单元可以在氮液化器完全关断的情况下操作,然而这可能需要一些液氮从液氮储罐添加到空气分离单元的蒸馏塔系统以提供可能需要的任何制冷。
42.在高液氮模式下,气态氮进料流402被进料至氮进料压缩机404中,其中其在等于氮液化器再循环流440的压力下被排出。氮进料压缩机404的经进一步压缩的排出物流406与再循环流440混合成料流408,该料流在再循环压缩机410中仍被进一步压缩到中间压力。来自再循环压缩机410的排出物流被分成两个流,包括在热交换器52中冷却之前在热增压压缩机420和冷增压压缩机430两者中串联经进一步压缩的第一部分。排出物流的第二部分414通过热交换器52的中途被冷却,并且然后在热涡轮425中膨胀。来自热涡轮的废气流428在中间位置处返回到热交换器52,并与返回的冷循环流438混合。
43.在低液氮模式或液体调低模式下,气态氮进料流402经由旁通阀407被转移并被引导至氮再循环压缩机410。在这种低液氮模式下,涡轮机械保持在大致恒定的压力比和实际体积流量下。为了实现这一点,氮液体产物流的总压头被降低,同时保持跨涡轮的压力比大致恒定,直到再循环流440以刚好高于大气压的压力进入再循环压缩机410。在这种低液氮模式下,不需要进料压缩机,因为气态氮进料流402处于比再循环压缩机的进料更高的压力下。除了调低氮液化器中的总压力之外,再循环流速降低,直到通过压缩设备的体积流量等于高液氮情况下的体积流量。
44.当使用集成式氮液化器时,由于补充致冷优选地由集成式氮液化器提供,因此几乎不需要uct布置。然而,优选地仍然安装uct,并且空气分离单元可以在液化器关闭的情况下(即,不存在液氮模式)在纯气体模式下运行,如上所述。
45.从热交换器的角度来看,用于空气分离单元的氮液化器和主换热器两者的料流和/或热交换通道可以整合至单个核心中,或者在更大的空气分离单元的情况下,整合至所有核心中。另选地,这两种热交换功能可以根据空气分离单元的尺寸和所需要的热交换核心的总数,在各种可能的构形的核心中分离或分开。
46.这是另一种混合操作模式,该混合操作模式将被称为混杂模式4。为了在低温空气分离单元中的仅生产气体氩和氮的过程中降低操作成本(即动力成本),设备操作者可以交替在低液氮模式(模式2)和不存在液氮模式(模式1)下运行空气分离单元,其中蒸馏塔系统所需要的任何所需的液氮从液氮罐或其他液氮源添加。在这种不存在液态氮模式期间,液
态氮储罐被耗尽,并且通过将操作模式切换到低液态氮模式来周期性地重新填充。采用这种在不存在液氮模式与低液氮模式之间的切换技术,液氮储罐将不得不被设计成或尺寸设定成具有额外的容积,以允许在不同的操作模式之间切换。
47.实施例
48.为了证明本发明集成式液化器的实用性,执行了计算机模型模拟,以比较如上大体公开的带有集成式氮液化器的生产氮和氩的低温空气分离单元的不同操作模式。将各种空气分离单元的工作参数与美国专利申请序列号15/962,358中大体示出和描述的生产氮和氩的基线低温空气分离单元进行比较。
49.在表1中,针对生产氮和氩的低温空气分离单元的三种不同的操作模式,示出了来自计算机模型模拟的数据,该模式包括:无液氮操作模式(模式1),这里称为不存在液氮模式;低液氮模式(模式2);和高液氮模式(模式3)。为了与没有氮液化器的基线空气分离单元进行比较,各种料流的工作压力、温度和流量以及图2所示的氮液化器中采用的涡轮机械的压力比被制成表格。
50.出于比较目的,基线系统和所有操作模式使用类似的进入的进料空气条件,即约53,000nm3/h至60,000nm3/h的流速以及进入的经压缩的预纯化空气在约116.1psia下的压力。如表1所示,与基线空气分离单元相比,每种不同的操作模式产生相似体积的气态氮产物、气态氧产物,但是当在低液氮模式(模式2)和高液氮模式(模式3)下操作时,氩生产比基线空气分离单元增加。模式2中氩生产增加2.5%,进入的气流仅增加1.8%,且主空气压缩机(mac)功率消耗增加2.0%,而模式3中氩生产增加约12.4%,进入的气流增加11.7%,且主空气压缩机(mac)功率增加12.0%。
51.[0052][0053]
[0054]
表1
[0055]
更重要的是,可以预知,当在低液氮模式(模式2)和高液氮模式(模式3)下操作时,液氮生产大大提高。具体地,在第一流量控制阀闭合(参见图2中的阀403)的模式2(其为低压低液氮模式(即液氮调低模式))下,第二旁通阀打开(参见图2中的阀407),并且气态氮进料流的压力从约27.5psia(参见图2中的流402)降低到约16.5psia(参见图2中的流409),液氮产物制造量在约180psia的压力下为约750nm3/h,而氮液化器消耗约519kw的功率。相比之下,在第一流量控制阀打开(参见图2中的阀403)的模式3(其为高压高液氮操作模式)下,第二旁通阀闭合(参见图2中的阀407),并且气态氮进料流的压力为约27.5psia(参见图2中的流404),液态氮产物制造量在约750psia的压力下为约4885nm3/h,而氮液化器消耗2467kw的功率。
[0056]
为了比较,表1和表2中所示的操作模式1是不存在液氮操作模式,其中第一流量控制阀(参见图2中的阀403)和第二旁通阀(参见图2中的阀407)都闭合。在这种操作模式下,可以从空气分离单元中提取少量的液氮,作为过冷搁架转移氮流的一小部分。此外,如上所述,基线模式代表生产氮和氩的低温空气分离单元的操作,如美国专利申请序列号15/962,358中大体所示和所述。
[0057]
现在转向表2,示出了如上所述的模式1和模式2操作模式与不同的预期操作模式4之间的相应产物制造量和功率消耗的进一步比较,该操作模式根据本地液氮需求和功率成本随时间在模式1与操作模式2之间切换。例如,当公用功率成本高和/或对液氮的需求低时,操作者可以选择在模式1(即不存在液氮操作模式)下操作,而当公用功率成本低和/或存在对液氮的一些需求时,操作者可以选择在模式2(即液氮调低模式)下操作空气分离单元。模式4表示共享操作模式或模式1和模式2操作的平均值。
[0058][0059]
表2
[0060]
如计算机模型模拟中产生的数据和表中所示,上述生产氩和氮的空气分离单元可以在纯气体产品状态模式下或根据高液氮模式(即lin冲刺模式或再装罐模式)或甚至在低液氮模式下操作,而在这三种模式中的任何一种模式下都不会出现从蒸馏塔系统进行氩回收率和氮回收率的性能损失。
[0061]
虽然已参考一个或多个优选的实施方案描述了本发明,但是应当理解,在不脱离所附权利要求书所阐述的本发明的精神和范围的情况下,可进行多种添加、改变和省略。

技术特征:


1.一种空气分离单元,所述空气分离单元包括:主空气压缩系统,所述主空气压缩系统被构造用于接收进入的进料空气流并且产生经压缩的空气流;基于吸附的预纯化器单元,所述基于吸附的预纯化器单元被构造用于从所述经压缩的空气流中去除水蒸气、二氧化碳、一氧化二氮和碳氢化合物并产生经压缩且纯化的空气流;主热交换系统,所述主热交换系统被构造成将所述经压缩且纯化的空气流冷却到适于分馏的温度;蒸馏塔系统,所述蒸馏塔系统具有经由冷凝器-再沸器以热传递关系联结的高压塔和低压塔,所述蒸馏塔系统还包括与所述低压塔操作地联接的氩塔布置,所述氩塔布置具有至少一个氩塔和氩冷凝器,所述蒸馏塔系统被构造用于接收经冷却、压缩且纯化的空气流并从所述低压塔产生至少两个或更多个富氧流;氩产物流、气态氮产物流;其中来自所述低压塔的所述富氧流中的至少一个富氧流是氧产物流,并且来自所述低压塔的所述富氧流中的至少一个富氧流是被引导至所述氩冷凝器的富氧冷凝介质;和氮液化器,所述氮液化器包括氮进料压缩机;氮再循环压缩机;热增压压缩机、加载增压器的热涡轮、冷增压压缩机和加载增压器的冷涡轮,并且与所述主热交换系统和所述蒸馏塔系统成一体,并且其中所述氮液化器被布置或构造成接收所述气态氮产物流的一部分并产生液氮产物流;其中所述氮液化器被构造成以三种模式操作,所述三种模式包括:(i)第一不存在液氮模式,其中所述气态氮产物流中没有一部分被转移到所述氮液化器并且在所述氮液化器中没有液氮产物流产生;(ii)第二低液氮模式,其中所述气态氮产物流的一部分作为气态氮进料流被转移到所述氮液化器,所述气态氮进料流绕过所述氮进料压缩机并且被转移到所述氮再循环压缩机;和(iii)第三高液氮模式,其中所述气态氮产物流的一部分作为所述气态氮进料流被转移到所述氮液化器的所述氮进料压缩机。2.根据权利要求1所述的空气分离单元,其中所述氮液化器还包括设置在所述氮进料压缩机上游的第一流量控制阀和被构造用于将所述气态氮进料流转移到所述氮再循环压缩机的第二旁通阀。3.根据权利要求2所述的空气分离单元,其中所述氮液化器还包括其中所述第二旁通阀是膨胀阀,所述膨胀阀被构造用于减小转移到所述氮再循环压缩机的所述气态氮进料流的压力。4.根据权利要求2所述的空气分离单元,其中在所述第一不存在液氮模式下,所述第一流量控制阀和所述第二旁通阀均处于闭合位置,使得没有所述气态氮产物流被转移到所述氮液化器。5.根据权利要求2所述的空气分离单元,其中在所述第二低液氮模式下,所述第一流量控制阀处于闭合位置,并且所述第二旁通阀处于打开位置,使得所述气态氮产物流的一部分被转移到所述氮液化器的所述氮再循环压缩机。6.根据权利要求5所述的空气分离单元,其中所述气态氮产物流的被转移到所述氮再循环压缩机部分的所述一部分按体积流量计占所述气态氮产物流的介于1%与5%之间。7.根据权利要求2所述的空气分离单元,其中在所述第三高液氮模式下,所述第一流量控制阀处于打开位置,并且所述第二旁通阀处于闭合位置,使得所述气态氮产物流的一部
分被转移到所述氮液化器的所述氮进料压缩机。8.根据权利要求7所述的空气分离单元,其中所述气态氮产物流的被转移到所述氮液化器的所述一部分占所述气态氮产物流的介于5%与10%之间。9.根据权利要求1所述的空气分离单元,其中:所述氩塔被构造成从所述低压塔接收富氩-氧流,并且产生返回或释放到所述低压塔中的第三富氧流以及被引导至所述氩冷凝器的富氩塔顶馏出物;并且所述氩冷凝器被构造成因取自所述低压塔的所述富氧冷凝介质而冷凝所述富氩塔顶馏出物,以产生粗制氩流、氩回流流和富氧废物流。10.根据权利要求9所述的空气分离单元,其中所述氩冷凝器被构造成因取自所述低压塔的所述富氧冷凝介质和液氮源的混合物而冷凝所述富氩塔顶馏出物,以产生所述粗制氩流、所述氩回流流和所述富氧废物流。11.根据权利要求10所述的空气分离单元,其中所述液氮源是取自所述氮液化器的所述液氮产物流的一部分。12.根据权利要求9所述的空气分离单元,其中所述富氧废物流在所述主热交换系统中加热并用于使所述基于吸附的预纯化单元再生。13.根据权利要求12所述的空气分离单元,其中所述富氧废物流在所述基于吸附的预纯化单元的上游被进一步压缩。14.一种氮液化器,所述氮液化器被构造成与产生氩和氮的低温空气分离单元成一体,所述氮液化器包括:气态氮产物流,所述气态氮产物流由所述低温空气分离单元和气态氮进料流产生,所述气态氮进料流按体积计占所述气态氮产物流的介于约1%与10%之间;氮进料压缩机,所述氮进料压缩机被构造成经由设置在所述氮进料压缩机上游的第一流量控制阀接收所述气态氮进料流并压缩所述气态氮进料流;氮再循环压缩机,所述氮再循环压缩机被构造成从所述氮进料压缩机接收经压缩的气态氮进料流或经由第二旁通阀接收所述气态氮进料流,并且进一步压缩所接收的料流以产生经进一步压缩的热氮流;热增压压缩机,所述热增压压缩机设置在所述氮再循环压缩机下游并且被构造成仍进一步压缩所述经进一步压缩的热氮流的第一部分以产生经进一步压缩的冷氮流;冷增压压缩机,所述冷增压压缩机被构造成进一步压缩所述冷氮流以产生初级氮液化流;加载增压器的热涡轮,所述加载增压器的热涡轮操作地联接到所述热增压压缩机并且被构造成使所述经进一步压缩的热氮气流的第二部分膨胀以产生热再循环流;加载增压器的冷涡轮,所述加载增压器的冷涡轮操作地联接到所述冷增压压缩机并且被构造成使所述初级氮液化流的再循环部分膨胀并产生冷再循环流;热交换器,所述热交换器被构造成通过与所述热再循环流和所述冷再循环流的间接热交换来冷却所述初级氮液化流,以产生液氮产物流;其中所述热再循环流和所述冷再循环流在离开所述热交换器之后再循环回到所述再循环压缩机。15.根据权利要求14所述的氮液化器,其中所述热交换器被进一步构造成部分地冷却
所述经进一步压缩的热氮流的所述第二部分并且部分地冷却所述初级氮液化流的所述再循环部分。16.根据权利要求14所述的氮液化器,其中所述氮液化器被构造成在第一不存在液氮模式下操作,其中所述第一流量控制阀和所述第二旁通阀定向在闭合位置,使得所述气态氮产物流中没有一部分被转移到所述氮液化器并且在所述氮液化器中没有液氮产物流产生。17.根据权利要求14所述的氮液化器,其中所述氮液化器被构造成在第二低液氮模式下操作,其中所述第一流量控制阀定向在闭合位置,并且所述第二旁通阀定向在打开位置,使得所述气态氮产物流的一部分作为气态氮进料流被转移到所述氮再循环压缩机并绕过所述氮进料压缩机。18.根据权利要求14所述的氮液化器,其中所述氮液化器被构造成在第三高液氮模式下操作,其中所述第一流量控制阀定向在打开位置,并且所述第二旁通阀定向在闭合位置,使得所述气态氮产物流的一部分作为气态氮进料流被转移到所述氮进料压缩机。19.根据权利要求17所述的氮液化器,其中所述气态氮产物流的被转移到所述氮再循环压缩机部分的所述一部分按体积流量计占所述气态氮产物流的介于1%与5%之间。20.根据权利要求18所述的氮液化器,其中所述气态氮产物流的被转移到氮进料压缩机部分的所述一部分按体积流量计占所述气态氮产物流的介于5%与10%之间。21.一种从空气分离单元产生液氮产物流的方法,所述方法包括以下步骤:在主空气压缩系统中压缩进入的进料空气流以产生经压缩的空气流;在基于吸附的预纯化器单元中纯化所述经压缩的空气流以产生经压缩且纯化的空气流;在主热交换系统中将所述经压缩且纯化的空气流冷却至适于分馏的温度;在蒸馏塔系统中分馏经冷却、压缩且纯化的空气流,所述蒸馏塔系统具有经由冷凝器-再沸器以热传递关系联结的高压塔和低压塔,所述蒸馏塔系统还包括与所述低压塔操作地联接的氩塔布置,所述氩塔布置具有至少一个氩塔和氩冷凝器,所述蒸馏塔系统被构造成从所述低压塔产生至少两个或更多个富氧流;氩产物流、气态氮产物流;其中来自所述低压塔的所述富氧流中的至少一个富氧流是氧产物流,并且来自所述低压塔的所述富氧流中的至少一个富氧流是被引导至所述氩冷凝器的富氧冷凝介质;并且在氮液化器中液化所述气态氮产物流的一部分,所述氮液化器包括氮进料压缩机;氮再循环压缩机;热增压压缩机、加载增压器的热涡轮、冷增压压缩机和加载增压器的冷涡轮,并且与所述主热交换系统和所述蒸馏塔系统成一体,并且其中所述氮液化器被布置或构造成接收所述气态氮产物流的一部分并产生液氮产物流;其中所述氮液化器被构造成以三种模式操作,所述三种模式包括:(i)第一不存在液氮模式,其中所述气态氮产物流中没有一部分被转移到所述氮液化器并且在所述氮液化器中没有液氮产物流产生;(ii)第二低液氮模式,其中所述气态氮产物流的一部分作为气态氮进料流被转移到所述氮液化器,所述气态氮进料流绕过所述氮进料压缩机并且被转移到所述氮再循环压缩机;和(iii)第三高液氮模式,其中所述气态氮产物流的一部分作为所述气态氮进料流被转移到所述氮液化器的所述氮进料压缩机。22.根据权利要求21所述的方法,其中所述气态氮产物流的被转移到所述氮再循环压
缩机部分的所述一部分按体积流量计占所述气态氮产物流的介于1%与5%之间。23.根据权利要求21所述的方法,其中所述气态氮产物流的被转移到所述氮液化器的所述一部分占所述气态氮产物流的介于5%与10%之间。24.根据权利要求21所述的方法,所述方法还包括以下步骤:在所述氩冷凝器中因取自所述低压塔的所述富氧冷凝介质而冷凝富氩塔顶馏出物,以产生粗制氩流、氩回流流和富氧废物流。25.根据权利要求24所述的方法,其中在所述氩冷凝器中冷凝所述富氩塔顶馏出物的步骤还包括在所述氩冷凝器中因取自所述低压塔的所述富氧冷凝介质和液氮源而冷凝所述富氩塔顶馏出物,以产生所述粗制氩流、所述氩回流流和所述富氧废物流。26.根据权利要求25所述的方法,其中所述液氮源是取自所述氮液化器的所述液氮产物流的一部分。27.根据权利要求24所述的方法,所述方法还包括以下步骤:用所述富氧废物流使所述基于吸附的预纯化单元再生。

技术总结


本发明提供一种被构造成与产生氩和氮的低温空气分离单元成一体的氮液化器以及氮液化方法。集成式氮液化器和相关方法可以在至少三种不同的模式下操作,包括:(i)不存在液氮模式;(ii)低液氮模式;和(iii)高液氮模式。本发明的系统和方法被进一步表征为来自空气分离单元的低压塔的富氧流是在氩冷凝器中使用的富氧冷凝介质。富氧冷凝介质。富氧冷凝介质。


技术研发人员:

B

受保护的技术使用者:

普莱克斯技术有限公司

技术研发日:

2020.12.11

技术公布日:

2022/12/15

本文发布于:2024-09-22 03:39:53,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/37252.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:所述   液氮   气态   液化器
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议