微纳米气泡臭氧一体机讲解

微纳米气泡一体机净化设备简介
一、微纳米气泡一体机组成
微纳米气泡一体机组成包括以下几个部分
1)微纳米气泡发生装置
2)臭氧放电体及电源部分
3)制氧机系统
4)配套冷干机及气泵
5)配套检测系统
6)自动控制系统
微纳米气泡一体机中2、3、4部分构成臭氧发生装置,提供浓度较高的臭氧气体,然后臭氧气体通入微纳米气泡发生装置,微纳米气泡发生装置产生富含臭氧的微纳米气泡液,用于水体及废气净化。
检测系统包含:微纳米气泡发生装置出水口压力检测、微纳米气泡发生装置进气口流量检测控制、制氧机出口流量检测控制、臭氧放电体循环水温度检测等。
自动控制系统采用人机界面,内容包含:各设备运行电压及电流显示、电流调节、各检测仪表显示、故障原因提示、故障报警。
二、微纳米气泡一体机原理简介
微纳米气泡一体机含有微纳米气泡发生装置及臭氧发生装置,两者协同作用,充分发挥两者各自优势,极大提高了设备净化效率。其净化原理从一下两个方面做简单介绍。
2.1微纳米气泡粒子能量
1)电离能
氧气经过电离后生成部分氧离子,并形成等离子体,当电离作用消失后,氧等离子体消失,转变成活性氧气团,主要包括臭氧离子团(O32-、O3-)、臭氧分子团(O3)、氧离子团(O22-、O2-)、氧分子团(O2)等,这些活性氧气团具有非常高的电离能,经过气体切割后,各种离子团和分子团分离,切割动能转变为气泡能级跃迁能量,在各个气泡中表现为电离能提高,达到可以随时产生氧化作用的高能级,可以氧化一切接触到的物质。
图原子电离能示意图
2)高速动能
气泡是经过水对目标气体离心切割吸入作用产生的,切割后产生水气混合液体,气泡伴随着切割水溶液在蜗旋加速系统中加速运动,由于蜗旋加速系统的特点是进水总量与喷射出水总量相等,而进水口管径远远大于出水口径,所以出水口的水溶液流速将大幅度提高:
L 1S
1
=2L
2
S
2
S 1=πd
1
2/4
S 2=πd
2
2/4
其中:L
1为进水口水溶液流速,S
1
为进水口截面积,d1为进水口直径
L 2为出水口水溶液流速,S
2
为出水口截面积,d2为出水口直径
则出水口水溶液流速L
2
计算如下:
L 2=L
1
d
1
2/2d
2
2
蜗旋加速系统的进水口直径d
1=G
1
/2
蜗旋加速系统的出水口直径d
2=G
1
/
16
则L2=64L1
一般进水口流速L1的选定范围为4—10米/秒,最高为20米/秒,因此出水口流速L2的增速范围为256—640米/秒,最高出水口流速可以达到1280米/秒。
当活性氧气泡流速达到256米/秒以上后,气泡就具有了非常高的动能,这种动能足以在有效传输距离(发生断裂化学键和共价键的传输距离)中打破任何污染物与水分子之间的共价键连接和污染物内部的化学键连接,实现水质净化还原和对污染物的氧化降解,一般有效传输距离为0.5—0.8米;当活性氧气泡流速达到640米/秒甚至更高时,活性氧气泡被压缩得更小,气泡拥有的动能将倍增,
在水中的有效传输距离将提高到3米以上,进一步提高了气泡对污染物的氧化降解作用率和对废气净化的作用。
3)分子间能
任何分子之间都存在分子间的作用力,称为分子间能。
切割后形成的气泡伴随着切割水溶液在蜗旋加速系统中加速运动,在加速运动中来自外部的压力逐渐
增高,气泡因外部压力增高而逐渐压缩,活性氧分子间距逐渐缩小,因此导致分子间作用力越来越强,分子间能逐步提高,到含有气泡的水溶液喷射之前,气泡因压力的作用压缩到最小,气泡直径压缩到5微米到几个纳米,分子间能蓄积达到最高,气泡破裂后活性氧分子自由热运动增强,可以随时加入到水分子共价键中成为溶解氧,也可以随时断裂其他物质与水分子形成的共价键,氧化其他物质。
4)爆炸能
活性氧微纳米气泡进入水中后产生三种变化,第一种为气泡破裂,活性氧以分子态溶解于水中成为溶解氧;第二种为气泡融合成为大分子气泡,随着气泡不断融合壮大,气泡将上升出水面;第三种为气泡保持原态在水中横向、向下、向上运动,4—5小时后才能上升到水面,在这个过程中发挥氧化降解和净化水的作用。
我们所说的气泡破裂爆炸能是指第一种情况,活性氧微纳米气泡进入水中后,因气泡内部压力比较高导致气泡壁具有比较高的张力,发生碰撞或其他条件导致气泡破裂,气泡壁的张力作用将释放巨大的爆炸能量,这种爆炸能量可以促使活性氧分子溶解于水,同时可以破坏污染物与水的共价键连接,也可以破坏污染物内部的化学键连接,活性氧同时发挥作用,完成氧化降解污染物和净化废气。
5)结合能
活性氧微纳米气泡进入水中后发生第二种变化即气泡融合成为大气泡时,由于气泡融合导致气泡壁表面张力下降,融合的气泡将释放较大的气泡结合能,这种结合能可以导致气泡周边的污染物与水之间的共价键结合破裂,使气泡中的活性氧对污染物产生氧化降解作用和活性氧分子在水中的溶解作用。
以上五种能量在活性氧微纳米气泡中共存,五种能量结合后使活性氧气泡拥有超高的粒子能量。活性氧微纳米气泡的运动是由气泡自身能量引发的,气泡
在高速运动中使液体被加热到可以随时发生化学反应的临界状态,其中化学反应将以我们不能想象的、也不能从物理的角度推测的速度发生,从而可以对水中任何污染物发挥氧化作用,达到氧化降解污染物和净化水质目的。
这种高能氧气泡或分子团以溶液喷雾的方式喷洒到空气中,因活性氧气泡具有超高的能量,能够捕集空气中的各种污染物,并对污染物氧化降解,净化空气。
根据微纳米气泡产生的能量,对于废气的反应过程如下:
气泡的动能和气泡破裂释放的爆炸能作用,断裂了污染物与水之间的共价键、水分子之间的共价键,氧分子团在分子键能的作用下迅速离散为氧分子并与部分水分子结合成为水中的溶解氧:
H 2O-(M-M)n+E——H
2
O+(M-M)n
H
2
O+O
2
+E——H
2
O-O
2
H
2
O+O
3
+E——H
2
O-O
3
其中:M为污染物,E为粒子能量。
融入水中的溶解氧(O2、O3)获得电子成为活性氧阴离子,氢离子与活性氧阴离子结合成过氧化氢(H2O2)。
O2+e———O2—
O3+e———O3—
2H++2e—+2O2———H
2O
2
+O
2
2H++2e—+2O3———H
2O
2
+2O
2
氧离子、过氧化氢、氢离子、氢氧根离子对水分子的综合作用,产生了大量的水和离子:
H++H
2O——H
3
O+(羟基离子)
OH-+H
2O——H
3废气净化装置
O2—(水氧基离子)
图氢氧基离子示意图
综上,利用微纳米气泡所含有的五种能量,可以与污染物成分作用,达到净化污染成分的目的。
2.2臭氧净化机理
2.2.1臭氧在水处理中的应用
世纪90年代起,由于怀疑水中的有机物和天然物质与氯发生反应形成的三卤甲烷具有致癌性,美国、日本和英国等国家也逐渐对臭氧在水处理中的应用产生了兴趣,并逐步在一些饮用水处理系统中采用或增设了臭氧处理工艺。
由于臭氧比氯有较高的氧化电位,因此它比氯消毒具有更强的杀菌作用。对细菌的作用也比氯快,消耗量明显较小,且在很大程度上不受PH的影响。有关资料报道,在0.45mg/L臭氧作用下,经过2min脊髓灰质炎病毒即死亡;如用氯消毒,则剂量为2mg/L时需经过3h。当1mL水中含有274~325个大肠菌,在臭氧剂量为1mg/L时可降低在肠菌数86%;剂量为2mg/L时,水几乎可以完全被消毒。
较之传统的氯消毒方法,臭氧消毒还有如下优点:
(1)消毒的同时可改善水的性质,且较少产生附加的化学物质污染。
(2)不会产生如氯酚那样的臭味。
(3)不会产生三卤甲烷等氯消毒的消毒副产物。
(4)臭氧可就地制造获得,它只需要电能,不需任何辅料和添加剂。

本文发布于:2024-09-21 23:37:11,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/365072.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:气泡   活性氧   臭氧   发生   分子   作用   污染物   净化
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议