组蛋白修饰 (2)

组蛋白修饰,英文histone modification 
 H3·H4 的乙酰化可打开一个开放的染质结构, 增加基因的表达。转录共同激活物如CBPöP 300、PCA F 实质上是体内的组蛋白乙酰基转移酶(HA T)。相反, HDAC 参与组成转录共同抑制复合物, 已发现的两个共同抑制复合物S IN 3、M i22NHRD(核小体重塑蛋白去乙酰基酶) 都含有HDAC1、HDAC2。S IN 3 的组成为核心(HDAC1、HDAC2、RBA P46öRBA P48 ) + S IN 3AöS IN 3B、SA P30öSA P18共同构成。S IN 3 复合物通过组分S IN 3A 与序列特异性转录因子或共同抑制物包括mael2max, 核激素受体N 2CORöSMRT、甲基化CPG 粘附蛋白(N ECP2、MBD2)相互作用。
所起作用
  M i22NHRD 由核心(HDAC1、HDAC2、RBA P46öRBA P48) + M i2、M TA 1öM TA 2、MBD3 组成, 其中MBD3 含有MBD 样序列, 与甲基化DNA 有低亲和力, 分析发现MBD3 与甲基化有关的氨基酸被置换, 由此推测MBD3 与MBD2 相互作用而使M i22NURD 与甲基化DNA 结合。由此看出, DNA 甲基化和组蛋白去乙酰化协同作用共同参与转录阻遏。此外,M i22NURD 还有染质重塑活性, 所以S IN 3 和M i22 NURD 可能分别在长期和短期转录阻遏
调节中起作用。
组蛋白修饰形式
  在哺乳动物基因组中,组蛋白则可以有很多修饰形式. 一个核小体由两个H2A,两个H2B,两个H3,两个H4组成的八聚体和147bp缠绕在外面的DNA组成. 组成核小体的组蛋白的核心部分状态大致是均一的, 游离在外的N-端则可以受到各种各样的修饰, 包括组蛋白末端的乙酰化, 甲基化, 磷酸化, 泛素化,ADP核糖基化等等. ,这些修饰都会影响基因的转录活性。   
组蛋白修饰方式
1.甲基化   组蛋白甲基化是由组蛋白甲基化转移酶(histonemethyl transferase,HMT)完成的。甲基化可发生在组蛋白的赖氨酸和精氨酸残基上,而且赖氨酸残基能够发生单、双、三甲基化,而精氨酸残基能够单、双甲基化,这些不同程度的甲基化极大地增加了组蛋白修饰和调节基因表达的复杂性。甲基化的作用位点在赖氨酸(Lys)、精氨酸(Arg)的侧链N原子上。组蛋白H3的第4、9、27和36位,H4的第20位Lys,H3的第2、l7、26位及H4的
第3位Arg都是甲基化的常见位点。研究表明·,组蛋白精氨酸甲基化是一种相对动态的标记,精氨酸甲基化与基因激活相关,而H3和H4精氨酸的甲基化丢失与基因沉默相关。相反,赖氨酸甲基化似乎是基因表达调控中一种较为稳定的标记。例如,H3第4位的赖氨酸残基甲基化与基因激活相关,而第9位和第27位赖氨酸甲基化与基因沉默相关。此外,H4—K20的甲基化与基因沉默相关,H3—K36和H3—K79的甲基化与基因激活有关。但应当注意的是,甲基化个数与基因沉默和激活的程度相关。 
 2.乙酰化   组蛋白乙酰化主要发生在H3、H4的N端比较保守的赖氨酸位置上,是由组蛋白乙酰转移酶和组蛋白去乙酰化酶协调进行。组蛋白乙酰化呈多样性,核小体上有多个位点可提供乙酰化位点,但特定基因部位的组蛋白乙酰化和去乙酰化是以一种非随机的、位置特异的方式进行。乙酰化可能通过对组蛋白电荷以及相互作用蛋白的影响,来调节基因转录。早期对染质及其特征性组分进行归类划分时就有人总结指出:异染质结构域组蛋白呈低乙酰化,常染质结构域组蛋白呈高乙酰化。最近有研究发现,某些HAT复合物含有一些常见的转录因子,某些HDAC复合物含有已被证实的阻遏蛋白。这些发现支持了高乙酰化与激活基因表达、低乙酰化与抑制基因表达有关的看法。   
蛋白精
3.组蛋白的其他修饰方式   相对而言,组蛋白的甲基化修饰方式是最稳定的,所以最适合作为稳定的表观遗传信息。而乙酰化修饰具有较高的动态,另外还有其他不稳定的修饰方式,如磷酸化、腺苷酸化、泛素化、ADP核糖基化等等。这些修饰更为灵活的影响染质的结构与功能,通过多种修饰方式的组合发挥其调控功能。所以有人称这些能被专识别的修饰信息为组蛋白密码。这些组蛋白密码组合变化非常多,因此组蛋白共价修饰可能是更为精细的基因表达方式。   另外,研究发现H2B的泛素化可以影响H3K4和H3K79的甲基化,这也提示了各种修饰间也存在着相互的关联。 
组蛋白修饰与基因调控
  基因表达是一个受多因素调控的复杂过程.组蛋白是染体基本结构-核小体中的重要组成部分,其N-末端氨基酸残基可发生乙酰化、甲基化、磷酸化、泛素化、多聚ADP糖基化等多种共价修饰作用.组蛋白的修饰可通过影响组蛋白与DNA双链的亲和性,从而改变染质的疏松或凝集状态,或通过影响其它转录因子与结构基因启动子的亲和性来发挥基因调控作用.组蛋白修饰对基因表达的调控有类似DNA遗传密码的调控作用.
组蛋白修饰与DNA甲基化之间的关系
  在引起基因沉默的过程中,沉默信号(DNA甲基化、组蛋白修饰、染质重新装配)是如何进行的?谁先谁后?这是一个“鸡和蛋”的问题,目前仍处于研究阶段,还没有定论。研究发现DNA甲基化和组蛋白乙酰化是一个相互促进、加强的过程,如许多HDAC可以和DNMTl、3a、3b相互作用;而甲基化CpG结合蛋白— 2(methylcytosinebindingprotein—2,MeCP—2)又可以和HDAC相互作用。这种作用方式提示着这两种方式中任何一种的存在都可以引起另一种修饰方式的起始。   沉默信号如何进行?它们发生的顺序如何?早期的研究多来源于对非哺乳动物生物的研究。Tamaru在链孢霉属(Neurospora)CTaSSa中研究发现,H3K9组蛋白甲基化转移酶的突变,会引起DNA甲基化的丢失,这暗示着组蛋白甲基化可以起始DNA甲基化。Tariq在Arabidopsis中研究也发现,CpNpG甲基化依赖于组蛋白甲基化。以上证据都暗示着,组蛋白甲基化对DNA甲基化有指导作用。   然而在哺乳动物细胞中,这种现象还有待于进一步研究。而从一些结果可以看出,在哺乳动物中,组蛋白修饰似乎又是DNA甲基化发生以后的事件。但Bachman在哺乳动物中敲除p16基因时发现,染质修饰并不完全依赖于最初的DNA甲基化。同时,Mutskov和Felsenfeld的结果也支持了这个理论,他们认为组蛋白修饰是ILR2基因沉默的早期事件,启动子区的甲基化是一个逐步增加的过程,DNA甲基化的建立是为了长期维持基因沉默,而不是起始它。   从
以上的结果可以看出,表观遗传学过程是复杂的和多层面的,不同的表观遗传修饰也可能存在区域或信号途径的特异性,有很多未知的东西有待于进一步研究。

本文发布于:2024-09-23 01:28:11,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/360692.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:基因   修饰   染色质   转录   研究
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议