广播电视卫星传输技术.

广播电视卫星传输技术
    一、卫星通信的优势
    利用卫星传输广播电视节目是卫星应用技术的重大发展,卫星通信同现在常用的电缆通信、微波通信等相比,有较多的优点,具体表现在以下几个方面:
    ●卫星通信的传播距离远。
    同步通信卫星可以覆盖最大跨度达一万八千公里的区域。在这个覆盖区的任意两点都可通过卫星进行通信,而微波通信一般是50公里左右设一个中继站,一颗同步通信卫星的覆盖距离相当于300多个微波中继站。
    ●卫星通信路数多、容量大。一颗现代通信卫星,可携带几十个转发器,可提供几十路电视和成千上万路电话。
    ●卫星通信质量好、可靠性高。卫星通信的传输环节少,不受地理条件和气象的影响,可获得高质量的通信信号
    ●卫星通信运用灵活、适应性强。它不仅能实现陆上任意两点间的通信,而且能实现船与船、船与岸上、空中与陆地之间的通信,它可以组成一个多方向、多点的立体通信网。
    ●成本低。在同样容量、同样距离的条件下,卫星通信和其他通信设备相比,耗费的资金少,卫星通信系统的造价并不随通信距离的增加而提高,随着设计和工艺的成熟,成本还在不断降低。
    二、卫星电视广播系统组成
    卫星电视广播系统主要由四部分组成:上行发射站、星载转发器、测控站、地球接收站。上行发射站把节目制作中心送来的信号(可以是数字电视信号、数字广播、视频、音频、中频信号等)加以处理,经过调制,上变频和高功率放大,通过定向天线向卫星发射上行C、Ku波段信号;同时也接收由卫星下行转发的微弱的微波信号,监测卫星转播节目的质量。星载转发器用于接收地面上行站送来的上行微波信号(C波段为6GHz,Ku波段为14GHz),并将它放大、变频、再放大后,发射到地面服务区内。因此,星载转发器实际上是起一个空间中继站的作用,它应以最低附加噪声和失真传送电视广播信号。地面接收站接收来自卫星的信号,经过低噪声放大,下变频为中频信号、中频信号经过调频、解调
后得到基带信号,分别送到视频恢复电路和伴音解调电路,重新得到正常的视频信号和伴音信号,直接送到电视监视器或电视机,重现彩图像和重放伴音,也可以重新调制到电视频道上传送给用户。
    三、广播电视卫星传输技术原理
    (一)上行发射站
    首先,经过视频处理电路处理后的视频信号与经过伴音处理电路处理的伴音信号相加混合成基带信号,然后对中频载波进行调制,将输入的基带信号变为70MHz的中频调谐波。中频信号再经过上变频,变为指定的发射频率后,送到高频功率放大器进行放大,再由发射天线发射给卫星。上行发射站可向卫星传送一路或多路信号,通常采用主瓣波束较窄的大口径发射天线发射,以提高上行站的抗干扰能力。
    1.视频信号处理过程
    ①预加重技术
    调制信号在接收端解调时,白噪声电平随频率的升高呈线性增长,这种变化规律称为调制波的三角噪声特性,它使图像信号的高频成分容易受到噪声的影响。为了提高图像信号高频端的信噪比,改善三角噪声特性,减少传输信号的微分增益和微分相位失真,在视频信道中对图像信号进行预加重处理。所谓预加重就是在发送端将图像信号先送入预加重网络,由于预加重网络具有高端增益高、低端增益低的特性,使得图像信号的高频成分得到增强。
    ②能量扩散技术
在带有行、场同步信号的视频信号中,大多数时间里信号电平都处于黑白电平上;而中间电平的时间较短。用这种视频信号对载波进行频率调制,就会造成频谱能量在两侧过于集中,分布不均匀,致使与它共用频段的某些地面通信受到较大干扰。为了减少这种干扰,在发射功率受到限制的同时,也应对信号频谱能量加以扩散。为此,人为将一个频率大约为30Hz的三角波加入基带信号中,组成复合信号。用此复合信号对载波进行调频,便可使信号频谱能量扩散,使其均匀分布。
2.伴音信号处理过程
自动干手机
    ①伴音信号的模拟传输方式微型拉曼光谱仪
    模拟传输方式首先将伴音信号中高于视频信号的上限频率的伴音副载波进行频率调制,然后与经过预加重和能量扩散处理的图像信号,按照频分复用的方式进行相加混合成基带信号,再对中频载波进行调频。伴音信号的模拟传输采用FM-FM(两次调频)的传输方式。
    ②伴音信号的数字传输方式
    数字传输过程首先将伴音信号进行模/数转换,即将伴音信号经过取样、量化、编码的一系列过程,将模拟的声音信号变为数字码流,并将多路数字化后的伴音信号按时分复用方式合成为一路数字信号,然后经过信号压缩、前向纠错编码及加扰码等一系列处理后,再对高于图像最高频率的伴音副载波进行相位调制。如此得到的伴音调制信号再与经过处理的图像信号合成为基带信号,最后一起对中频载波进行调制。
    (二)星载转发器
    在电视广播卫星上有C、Ku波段转发系统,它接收来自上行发射站的信号,并且向卫星
电视广播地面接收站转发下行信号,实质上是一个安装在赤道上空的中继站,其工作原理与地面差转机类似。它由收、发天线、转发器和电源组成。转发器又由高灵敏度的宽带低噪声放大器、变频器、C、Ku波段功率放大器等组成,是决定卫星电视广播质量的关键。
扁头螺丝    星载转发器在电路结构上一般有两种方式:一是直接变频式,它将上行的微波频率经过一次变频,变为下行微波频率。
    另一种为二次变频式,它将上行的微波频率变化为中频,经放大后再变频为下行频率。直接变频式电路简单,但由于工作频率高,因而对元器件要求高。二次变频式电路工作于中频,对元器件要求不高,容易实现高增益和AGC控制。
    (三)地面接收站
夺刀器    卫星电视接收站由天馈部分、高频头、卫星接收机等部分组成。天线接收来自卫星的信号,通过高频头将微弱的电磁波信号进行低噪声放大,并将它变换为频率为950~1450MHz的第一中频信号。中频信号经过电缆送到卫星接收机进行解调。选台器从950~1450MHz的输入信号中选出所要接收的某一电视频道的频率,并将它变换为固定的第二中
频频率(通常为479.5MHz),经中频放大和解调后得到包含视频和伴音信号在内的复合基带信号。视频信号送到视频恢复电路先经过去加重处理。所谓的去加重处理,实际上是让视频信号通过一个频率响应特性与预加重频响特性相反的无源二端口网络,从而抵消预加重网络对信号产生的频谱畸变,恢复原本信号。由于在发射端对信号进行了能量扩散处理,即在视频信号中加入了30Hz的三角波扩散信号。因此必须在接收端进行能量去扩散处理,去除叠加在视频信号上的三角波信号,恢复视频信号的原来特性,得到正常的视频信号。伴音信号送到伴音解调器经过放大、副载波解调,去加重后得到正常的伴音信号。
    四、我国卫星广播电视现状与发展方向
    我国卫星广播电视的现状是:模拟电视与数字电视节目并存;C波段卫星电视与Ku波段卫星电视并存;数字加密电视与数字非加密电视并存。
    今后应尽快建立广播卫星频段的大功率直播卫星系统(DBS)。Ku波段DBS的发展主要体现在以下三个方面:
    1.采用更大功率容量的Ku波段卫星开展直播卫星/直播到户(DBS/DTH)业务。使
广大用户使用0.4m甚至更小口径的接收天线,即可收到数十套至上百套丰富多彩的广播电视节目。
    2.试播HDTV。将高清晰度电视节目通过直播卫星向全国发送,在大、中城市和有条件接收的地方,可用小型卫星接收天线进行高清晰度电视的集体和个人接收。
    3.依靠卫星网络进行多功能开发利用,并与地面有线网络结合开拓多媒体市场,建立综合信息服务平台,开展新闻采集(SNG)和数据广播等业务。逐步向用户提供视频点播(VOD)、互联网接入、家中银行、实时信息发布、远程诊疗、远距离教学、电视会议、电视购物等多种服务。
第2节影响广播电视卫星安全传输的主要问题及基本应对
由上节介绍可见,广播电视的卫星传输系统是一个开放的无线远程点对面传输模式,上行站的工作状态、地面到卫星的空间环境状态、卫星的工作状态及地面单收站的工作状态均直接影响到广播电视节目卫星传输的效果;其中上行站、上行站到卫星的空间环境及卫星的状态异常对广播电视的节目传输产生的是面的影响,应给予更多的重视。
    1.上行站影响卫星传输的主要因素及克服办法
    上行站的异常产生的是一个面的影响,因此上行站的安全播出是广播电视卫星传输的基本保障之一。影响上行站安全播出的主要因素有:
    (1)人为失误
    包括操作失误、责任心不到位,未及时发现异态并采取挽救措施、业务不过硬造成的处理不当或处理不及时、维护检修不到位造成的设备故障。人为失误是可以杜绝的,办法是完善的管理制度、全面细致的故障预案、令行禁止的工作作风和一丝不苟的工作责任心。    尤其是面对当前法的疯狂干扰,卫星传输的安全播出工作必须做实做细。处理突发事件  的原则是有效抵御干扰,减少影响、缩短停播。围绕这一原则出解决问题的关键:
  重在衔接:在处理突发事件时,主备设备之间、主备系统之间、部门之间的无缝衔接,是减少影响的关键。衔接程序要科学严谨,衔接手段要完善,衔接责任要明确,要求要高,管理要严格,考核要精确,对接才能准确无误,达到尽可能减少影响,缩短停劣播的目的。
重在反应:在处理突发事件时,反应迅速、处理果断,是避免重大事故的关键。反应快是建立在责任心强的基础上,值班三心二意往往不能及时发现问题。处理果断是建立在业务功底强的基础上,业务不熟练,技术不过硬往往延误处理时间。因此,一线值班员的政治素质和业务素质在很大程度上决定了停播时间和影响大小。
重在方法:在处理突发事件时,清晰的处理程序,简洁的操作步骤,简练的口令是争取时间的关键。在日常工作中就要按照尽可能减少影响,缩短停播的原则,善于总结,善于积累,通过每一次停播事故改进维护流程,制定准确、简明、有效、实用的应急处理预案和操作卡片,通过科学的方法达到有效抵御干扰,减少影响,缩短停播的目的。
高炉    (2)设备故障
    单机设备故障是不可避免的,但可以通过系统备份策略、快速故障维护来避免或缩短因其造成的传输中断或传输质量下降。
    上行站作为点对面的卫星传输的一个核心环节,为保证传输的不间断和高质量,需要有必要的系统在线冗余配置,故障情况下上行设备的主备切换是及时恢复或避免传输异常的有效手段。
太阳能热水器水温水位传感器
    设备故障的快速恢复主要靠平时严格深入的业务培训和各种故障演练等措施提高维护人员的业务素质,从而快速恢复设备或系统故障达到目标。
    (3)电磁干扰
    主要靠电磁检测、频率协调以及电磁屏蔽手段解决问题。
    常见的电磁干扰为中波干扰、短波干扰、手机机站干扰、雷达干扰、电焊机产生的电磁干扰、微波干扰等。中波干扰主要影响地球站的基带处理系统和电源系统,主要的克服措施是良好的系统或机房屏蔽及屏蔽接地;短波干扰主要影响高速数字基带系统和L波段窄带传输线路,对于采用L波段ODU的地球站,由于该种设备一般需要由室内单元馈送一个L波段的本振信号,单频本振信号往往由于受短波干扰而给整个上行系统引入强大噪声,严重影响系统信噪比指标,比较有效的措施是机房屏蔽和馈线屏蔽,或采用半钢(铜皮屏蔽)电缆;雷达干扰多表现为对卫星C波段下行信号(4GHz)的干扰,由于此类干扰信号直接由接收天线引入卫星传输系统,地球站或卫星单收站一般无法克服,只能通过国家无委的频率协调解决,如果地球站或卫星单收站离干扰较远且有一定夹角也可通过适当加大接收天线口径解决;电焊机工作时会产生高频电磁弧,较近时会对卫星接收L波段的信号产生干扰,
正常传输时一般应避免电焊机在卫星接收区近距离工作;c波段卫星信号很可能受到地面微波信号的干扰,但现实中由于国家无委一般对上行站和微波信道有较好的规划,所以这种情况较少发生。

本文发布于:2024-09-20 22:49:04,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/325403.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:信号   处理   传输   上行   伴音   干扰
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议