高效风机用高速永磁电机设计与分析

摘要
相较于传统的永磁电机(PM machines),高速永磁电机(HSPM machines)体积更小、效率更高、功率密度更高。随着材料、加工工艺以及控制技术的发展,电机的转速得到了极大的提升,高速永磁电机也越来越多的运用于诸多领域。高速永磁电机的设计是一项电磁、机械和热耦合的综合任务,设计难度大。目前,高速永磁电机的设计方法尚不成熟,还有许多关键技术有待解决。
本文针对应用于风机中的高速永磁电机,提出了电机的设计流程,总结了相应的关键技术,着重研究了高速永磁电机的电磁优化设计,介绍了一种特殊的绕组连接方式来解决高速永磁电机绕组设计问题,并就转子涡流损耗进行了深入的研究。首先,在选择高速永磁电机定转子结构时,比较了不同极槽配合电机的性能差异,并阐明了高速电机设计中的绕组设计问题。为此,介绍了一种特殊的绕组连接方式,可增加并联支路数的选择范围,来解决绕组设计上的难题,并通过有限元模型的仿真分析验证了该方案的可行性。其次,在对高速永磁电机进行电磁优化时,分析了定子槽开口、永磁体极弧以及磁性槽楔的相对磁导率对电磁性能的影响,同时还比较了径向充磁和平行充磁的优劣,从而确定了最优的电磁方案。最后,在转子涡流损耗的问题上,提出了永磁体圆周方向和轴向分段以及套筒轴向分段的方法来减小涡流损耗,并探究了分段数对减小涡流损耗的影响。此外,还分析了套筒电导率对转子涡流损的影响,根
据分析结果提出采用复合型套筒的思路。与此同时,为了更好的模拟实际情况,分析了逆变器谐波电流对转子涡流损耗的影响。充气模型
基于文中的电磁设计方法,在完成机械和散热校核的工作后,设计出一台200kW,40000rpm的高速永磁电机。目前,样机已经制作完成,试验平台也已顺利搭建,在完成样机与轴承的装配问题后,便可开展样机试验。
关键词:高速永磁电机绕组连接方式电磁优化设计转子涡流损耗
Abstract
Compared with conventional permanent magnet machines (PM machines), high-speed permanent magnet machines (HSPM machines) have smaller volume, higher efficiency and higher power density. With the development of materials, processing technic and control technology, the maximum limitation speed of electrical machines is becoming much higher than before. Meanwhile, HSPM machines have been more widely used in numerous domains recently. The design of HSPM machines are difficult due to the coupling of electromagnetic, mechanical and thermal. Now, the desi
gn method of HSPM machines is immature, and there are still many key technologies to be solved.
液晶屏保护膜Aiming at the HSPM machines used in fans, the design flow is proposed and the key technologies are summarized at first in this paper. What’s more, the optimal electromagnetic design is highlighted. A special method for winding connection is proposed to solve the winding design problems in HSPM machines. And the rotor eddy-current losses are also deeply analyzed. Firstly, when choosing the stator and rotor structure of HSPM machines, electrical machines with different pole number and slot number are compared. And the winding design problems are also illuminated. Therefore, a special method of winding connection is proposed to solve winding design problems by increasing the choice of parallel branch number. And the viability of this method is verified by FEM analysis. Secondly, the influence of stator slot opening, pole arc and relative permeability of magnetic wedge to the electromagnetic performance are analyzed in optimal electromagnetic design of HSPM machines. Meanwhile, the radial magnetization and parallel magnetization are also compared. Thus the final optimum electromagnetic scheme is decided. At the end, when studying the rotor eddy-current losses, segmentations in circumference direction and axial direction of magnet and segmentations in axial direction of sleeve are used to reduce the rotor eddy-current losses. The influence of segmentations number to reduction of rotor eddy-current losses is also analyzed. Moreo
ver, the influence of sleeve conductivity to rotor eddy-current losses is highlighted. According to the conclusion, composite sleeve is recommended. Meanwhile, the influence of harmonic currents in inverters to the rotor eddy-current losses is studied to simulate the actual situations better.
Based on the electromagnetic design method above, after finishing mechanical and thermalverification,*************************************************
prototype and test platform have been built at present. After accomplishing the assembling work of prototype and bearing, the prototype test will be done soon.
Key words:High-speed permanent magnet machines  Winding connection Optimal electromagnetic design  Rotor eddy-current losses
目录
摘要............................................................................................................... . II 1  绪论
1.1研究背景与意义 (1)
1.2国内外研究概况 (2)
1.3论文的主要研究内容 (5)
2  高速电机关键技术研究现状
2.1高速永磁电机设计流程 (7)
2.2定子交直流铜耗 (8)
2.3定子高频铁耗 (9)
2.4转子损耗 (11)
2.5转子机械问题 (13)
2.6冷却设计与温升计算 (14)
2.7非接触式轴承 (15)
2.8本章小结 (16)
3  高速永磁电机定转子结构的选择及绕组设计
3.1极槽配合的选择 (17)
3.2高速永磁电机绕组设计问题 (17)
3.3一种特殊的绕组连接方式 (28)
3.4采用特殊绕组连接方式电机的有限元分析 (31)
3.5本章小结 (37)
4  高速永磁电机电磁优化设计
4.1定子齿槽优化 (38)
4.2转子永磁体优化 (43)
4.3磁性槽楔对电机性能的影响 (51)
大微动开关4.4本章小结 (54)
5  高速永磁电机转子涡流损耗分析
5.1高速永磁电机气隙磁密谐波分析 (55)
5.2套筒电导率对转子涡流损耗的影响 (57)
5.3复合套筒对转子涡流损耗的影响 (60)
5.4永磁体分段对转子涡流损耗的影响 (63)
丙酮回收
5.5套筒分段对转子涡流损耗的影响 (67)
5.6考虑逆变器谐波的转子涡流损耗分析 (69)
镀铬添加剂5.7其他抑制转子涡流损耗的若干方法 (72)
5.8本章小结 (72)
6  样机加工与试验
6.1样机加工与试验 (73)
7  总结与展望
7.1全文总结 (75)
7.2课题展望 (76)
致谢 (77)
参考文献 (78)
悠悠球轴承
附录I 硕士研究生期间发表的学术论文 (83)

本文发布于:2024-09-22 06:45:08,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/307753.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电机   转子   设计   涡流损耗   绕组   分析   电磁   优化
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议