高速切削(HSC)技术

  一、高速切削的原始定义
1931年,德国切削物理学家萨洛蒙(Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利(Machine with high cutting speeds)的所罗门原理:被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的56倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。切削塑性材料时,传统的加工方式为重切削,每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。
    二、现代高速切削技术的概念
    所罗门原理出发点是用传统刀具进行高速度切削,从而提高生产率。到目前为止,其原理仍未被现代科学研究所证实。但这一原理的成功应该不只局限于此。高速切削技术是切削技术的重要发展方向之一,从现代科学技术的角度去确切定义高速切削,目前还没有取得一致,因为它是一个相对概念,不同的加工方式,不同的切削材料有着不同的高速切削速度和
加工参数。这里包含了高速软切削、高速硬切削、高速湿切削和高速干切削等等。事实上,高速切削技术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能CNC控制系统、通讯系统,高速、高效冷却、高精度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。只有在这些技术充分发展的基础上,建立起来的高速切削技术才具有真正的意义。所以要发挥出高速切削的优越性能,必须是CAD/CAM系统、CNC控制系统、数据通讯、机床、刀具和工艺等技术的完美组合。
    三、高速切削技术的发展现状与优点
    自所罗门原理申请专利以来,高速切削技术的发展历经理论探索阶段,应用探索阶段,初步应用阶段和较成熟应用阶段。特别是j biol chem 20世纪真空脱蜡炉70年代后,各工业发达国家相继投入大量的人力、物力、财力研究开发高速切削技术及相关技术,发展日新月异,德国、美国、瑞典、瑞士、英国和日本等制造强国走在了世界前列。近几年,随着科学技术的突飞猛进和
经济发展的强大推动,高速切削机床、刀具技术和相关技术迅速进步,使高速切削(HSC- High Speed Cutting)技术以其高效率、高质量应用于航天、航空、汽车、模具和机床等行业中,各种切削方式、各种材料几乎无所不能,尤其是高速铣削和高速车削发展神速。该技术为轻切削方式,每一刀切削排屑量小,切削深度小,即apae很小,但切削线速度大,为传统的35倍,进给速度大,为传统的510 倍。其优点在于:
    (1) 加工时间短,效率高。高速切削的材料去除率通常是常规的35倍。
    (2) 刀具切削状况好,切削力小,主轴轴承、刀具和工件受力均小。由于切削速度高,吃刀量很小,剪切变形区窄,变形系数ξ减小,切削力降低大概30%~90%。同时,由于切削力小,让刀也小,提高了加工质量。
    (3) 刀具和工件受热影响小。切削产生的热量大部分被高速流出的切屑所带走,故工件和刀具热变形小,有效地提高了加工精度。
    (4) 刀具寿命长(这里指材质特殊,适合高速切削的刀具)。因刀具受力小,受热影响小,所以破损的机率很小,磨损也慢。
    (5) 工件表面质量好。首先apae小,工件粗糙度好,其次切削线速度高,机床激振频率远高于工艺系统的固有频率,因而工艺系统振动很小,十分容易获得好的表面质量。
  (6) 高速切削刀具热硬性好,且切削热量大部分被高速流动的切屑所带走,可进行高速干切削,不用冷却液,减少了对环境的污染,能实现绿加工。
    (7) 可完成高硬度材料和硬度高达HRC40-62淬硬钢的加工。如采用带有特殊涂层(TiAlN)的硬质合金刀具,在高速、大进给和小切削量的条件下,完成高硬度材料和淬硬钢的加工,不仅效率高出电加工(EDM)的3~6倍,而且获得十分高的表面质量(Ra0.4),基本上不用钳工抛光。
    四、高速切削系统
    高速切削系统主要由高速切削CNC机床、高性能的刀具夹持系统、高速切削刀具、高速切削CAM系统软件等几部分组成。
    1.高速切削CNC机床
    1)高稳定性的机床支撑部件
    高速切削机床的床身等支撑部件应具有很好的动、静刚度,热刚度和最佳的阻尼特性。大部分机床都采用高质量、高刚性和高抗张性的灰铸铁作为支撑部件材料,有的机床公司还在底座中添加高阻尼特性的聚合物混凝土,以增加其抗振性和热稳定性,不但保证机床精度稳定,也防止切削时刀具振颤;采用封闭式床身设计,整体铸造床身,对称床身结构并配有密布的加强筋,如德国Deckel Maho公司的桥式结构或龙门结构的DMC系列高速立式加工中心,美国Bridgeport公司的VMC系列立式加工中心,日本日立精机VS系列高速加工中心,使机床获得了在静态和动态方面更大限度的稳定性。一些机床公司的研发部门在设计过程中,还采用模态分析和有限元结构计算,优化了结构,使机床支撑部件更加稳定可靠。
管路接头    2)高速主轴系统
    高速主轴是高速切削技术最重要的关键技术,也是高速切削机床最重要的部件。要求动平衡性很高,刚性好,回转精度高,有良好的热稳定性,能传递足够的力矩和功率,能承受高的离心力,带有准确的测温装置和高效的冷却装置。高速切削一般要求主轴转速能力不小于40000r/min,主轴功率大于15kW。通常采用主轴电机一体化的电主轴部件,实现无
中间环节的直接传动,电机大多采用感应式集成主轴电动机。而随着技术的进步,新近开发出一种使用稀有材料铌的永磁电机,该电机能更高效,大功率地传递扭矩,且传递扭矩大。易于对使用中产生的温升进行在线控制,且冷却简单,不用安装昂贵的冷却器,加之电动机体积小,结构紧凑,所以大有取代感应式集成主轴电动机之势。最高主轴转速受限于主轴轴承性能,提高主轴的dn值是提高主轴转速的关键。目前一般使用较多的是热压氮化硅(Si3N4)陶瓷轴承和液体动、静压轴承以及空气轴承。润滑多采用油-气润滑、喷射润滑等技术。最近几年也有采用性能极佳的磁力轴承的。主轴冷却一般采用主轴内部水冷或气冷。
    3)高精度快速进给系统
    高速切削是高切削速度、高进给率和小切削量的组合,进给速度为传统的510倍。这就要求机床进给系统很高的进给速度和良好的加减速特性。一般要求快速进给率不小于60m/min,程序可编辑进给率小于40m/min,轴向正逆向加速大于10m/s2(1g)。机床制造商大多采用全闭环位置伺服控制的小导程、大尺寸、高质量的滚珠丝杠或大导程多头丝杠。随着电机技术的发展,先进的直线电动机已经问世,并成功应用于CNC机床。先进的
直线电动机驱动使CNC 机床不再有质量惯性、超前、滞后和振动等问题,加快了伺服响应速度,提高了伺服控制精度和机床加工精度。不仅能使机床在f=60m/min以上进给速度下进行高速加工,而且快速移动速度达f=120m/min,加速度达2g,提高了零件的加工精度。但直线电动机在使用中存在着承载力小、发热等问题,有待改进。
  跑偏传感器4)高效的冷却系统
    高速切削中机床的主轴、滚珠丝杠、导轨等产生大量的热,如不进行有效的冷却,将会严重影响机床的精度。大多采用强力高压、高效的冷却系统,使用温控循环水或其他介质来冷却主轴电动机、主轴轴承、滚珠丝杠、直线电动机、液压油箱等。Yamazen公司将压力为6.8Mpa的冷却液通过主轴中心孔,对机床主轴、刀具和工件进行冷却。日本日立精机公司研制开发出通过在中空的滚珠丝杠中传输冷却液,达到冷却丝杠稳定加工目的的滚珠丝杠冷却器。为了避免导轨受温升的影响,日立公司和轴承商联合研制出Eeo-Eeo的导轨润滑脂,该润滑脂润滑和冷却效果好,无有害物质,能进行自动润滑及不需专用设备等特点。日立精机机床公司VS系列CNC高速铣就采用此润滑脂,具有良好的使用及经济效果。
    5)高性能CNC控制系统
    高速切削加工要求CNC控制系统有快速处理数据的能力,来保证高速加工时的插补精度。一般要求程序段传送速率 1.620msRS232系列数据接口 19.2 Kbit/s(20ms)Ethernet数据传送 200Kbit/s(1.6ms)。新一代的高性能CNC控制系统采用32位或64CPU,程序段处理时间短至1.6ms。近几年网络技术已成为CNC机床加工中的主要通讯手段和控制工具,相信不久的将来,将形成一套先进的网络制造系统,通讯将更快和更方便。大量的加工信息可通过网络进行实时传输和交换,包括设计数据、图形文件、工艺资料和加工状态等,极大提高了生产率。但目前用得最多的还是利用网络改善服务,给用户提供技术支持等等。美国Cincinati Machine公司研制开发出了网络制造系统,用户只要购买所需的软件、调制解调器、网络摄像机和耳机等,即可上网,无需安装网络服务器,通过网上交换多种信息,生产率得到了提高。日立精机机床公司开发的万能用户接口的开放式CNC系统,能将机床CNC操作系统软件和因特网连接,进行信息交换。
    6)高安全性机床安全门罩
    高速切削机床普遍采用全封闭式安全门罩,高强度透明材料制成的观察窗等更完备的安全保障措施,来保证机床操作者及机床周围现场人员的安全,避免机床、刀具和工件等有
关设施受到损伤。一些机床公司还在CNC系统中开发了机床智能识别功能,识别并避免可能引起重大事故的工况,保证产品的产量和质量。
量脚器
    7)高精度、高速度的传感检测技术  这包括位置检测、刀具状态检测、工件状态检测和机床工况监测等技术。
    2.高性能的刀具夹持系统
    高速铣床的刀具夹持系统要求其有很高的动平衡性,要求主轴具有30000r/min之上的动平衡能力,且具有绝对的定心性。主轴、刀柄、刀具三者在旋转时应具有极高的同心度,这样才能保证高速、高精度加工。否则转速越高离心力越大,当其达到系统的临界状态将会使刀具系统发生激振,其结果是加工质量下降,刀具寿命缩短,加速主轴轴承磨损,严重时会使刀具与主轴损坏。刀柄系统与主轴锥度穴孔应结合紧密,现在刀柄一般都采用锥部与主轴端面同时接触的双定位锥柄。如日本的BBT刀柄,德国的HSK空心刀柄。刀具夹持装置一般用经动平衡处理的弹簧卡头,不过现在已有效果更好的液压真空装刀,强力铣卡头装刀。
    3.高速切削刀具刀具技术和机床制造,从一开始就相辅相成共同发展,可以毫不夸张的说,只有刀具技术和机床技术的不断发展,才推进了高速切削技术。高速切削刀具应具有良好的机械性能和热稳定性,即具有良好的抗冲击、耐磨损和抗热疲劳的特性。其采用的刀具材料主要是硬质合金,并且普遍采用刀具涂层技术,涂层材料为氮化钛(TiN)、氮化铝钛(TiALN)等等。涂层技术由单一涂层发展为多层、多种涂层材料的涂层。这一技术已成为提高高速切削能力的关键技术之一。世界各大硬质合金刀具制造商一般都将销售收入的311%投入到研发中,其中相当一部分用于硬质合金和涂层材料的基础研究。高速切削钢材时,刀具材料应选用热硬性和疲劳强度高的P类硬质合金、涂层硬质合金、立方氮化硼(抛丸处理CBN)与CBN复合刀具材料(WBN)等。切削铸铁,应选用细晶粒的K类硬质合金进行粗加工,选用复合氮化硅陶瓷或聚晶立方氮化硼(PCNB)复合刀具进行精加工。精密加工有金属或非金属材料时,应选用聚晶金刚石PCDCVD金刚石涂层刀具。选择切削参数时,针对圆刀片和球头铣刀,应注意有效直径的概念。高速铣削刀具应按动平衡设计制造。刀具的前角比常规刀具的前角要小,后角略大。主副切削刃连接处应修圆或导角,来增大刀尖角,防止刀尖处热磨损。应加大刀尖附近的切削刃长度和刀具材料体积,提高刀具刚性。刀具材料与被切削材料应具有较小的化学亲和力。高速铣削大多采用硬质
合金刀具。在保证安全和满足加工要求的条件下,刀具悬伸尽可能短,刀体中央韧性要好。刀柄要比刀具直径粗壮,连接柄呈倒锥状,以增加其刚性。尽量在刀具及刀具系统中央留有冷却液孔。球头立铣刀要考虑有效切削长度,刃口要尽量短,两螺旋槽球头立铣刀通常用于粗铣复杂曲面,四螺旋槽球头立铣刀通常用于精铣复杂曲面。

本文发布于:2024-09-22 09:48:31,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/306428.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:切削   刀具   机床   技术   主轴   加工
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议