si的刻蚀

1、硅(silicon)湿刻
50 ml HF, 50 ml CH3COOH,200 mg KMnO4 (fresh)       
108 ml HF, 350g NH4F per L H20       
换面鞋745 ml HNO3, 105 ml HF,75 mlCH3COOH,75 ml HClO4       
900ml HNO3, 95 ml HF,5ml CH3COOH, 14g NaClO2       
KOH NaOH       
TMAH       
EDP        NH2(CH2)2NH2
        C6H4(OH) 2
        C6H4N2/H20
HNO3与HF的组合蚀刻SI的时候是等向性的
HF腐蚀SIO2,HNO3腐蚀SI。
KOH与C3H8O和水的混合物来蚀刻SI的时候是非等向性的。
比如说V型槽就是通过这种非等向性的机制得到的
eva母
表面保护膜
2、薄膜溅射
溅射是微电子制造中,不用蒸发而进行金属膜沉积的主要替代方法。第一次发现溅射现象是在1852年,Langmuir在20世纪20年代将其发展成为一种薄膜沉积技术。溅射的台阶覆盖痹霍发好,辐射缺陷远少于电子束蒸发,在制作复合材料膜和合金时性能更好,这些优点使得溅射金属沉积技术成为大多数硅基工艺的最佳选择。
      简单的溅射系统sputter.jpg所示。在真空腔中有一个平行板等离子反应器,非常类似于简单的反应离子刻蚀系统。对于溅射应用,等离子腔体总归要构造成能使高能离子轰击到溅射靶上,溅射靶含有所要沉积的材料。溅射时,将靶材料,而不是圆片,放置在具有最大离子流的电极上。为了收集尽可能多的出射原子,在简单溅射系统中,阴极与阳极相距很近,通常小于10cm。用某种惰性气体充入此腔体,腔内气体压力维持在0.1Torr左右,这使得平均自由程有几百微米的量级。
      由于该工艺的物理特点,可用溅射沉积的金属种类很多。在溅射元素金属时,因为简单的直流溅射具有较大溅射速率,故优先采用;而溅射绝缘材料如SiO2时,应当用RF等离子体。如果靶材是合金或化合物,所沉积材料的化学配比会比靶材料略有所不同。无论如何,当溅射速率不同时,可以看到靶的表面集聚更多的溅射速率较低的材料,这将使沉积
薄膜的成分重新接近于靶体材料(只在靶温度足够低,固态扩散受到抑制时才正确),因而溅射不仅对于元素,而且对很宽范围内材料的沉积具有很大吸引力。
太阳电池结构和生产流程 早期的硅太阳电池的主体结构,它主要包括:单结的pn结、指形电极、减反射膜和完全用金属覆盖的背电极。
工业上生产太阳电池流程可以简化成:制备硅片→扩散制结→沉积减反射膜和钝化膜→制成电极→封装。
风机变压器>充气包装袋硅片制备
    1.单晶硅和多晶硅 无论是第一块硅太阳电池,还是现今转换效率最高的PERL太阳电池,所使用的硅片材料都是悬浮区熔硅。这种材料的纯度很高,具有完整的晶体结构,几乎不存在复合中心,但是昂贵的价格却限制了它在太阳电池领域的应用。直拉单晶硅价格虽然有所降低,但是对于大规模地面应用来说还是太昂贵。多晶硅虽然质量不如单晶硅,但由于无需耗时耗能的拉单晶过程,其生产成本只有单晶硅的1/20,而且工业中应用吸杂等技术可以维持较高的少子寿命,目前实验室多晶硅太阳电池的效率已达到20.
3%,工业上生产的多晶硅太阳电池的效率也可以达到13%~16%,因此,现在太阳电池市场上多晶硅电池的份额已经超过了单晶硅电池。
    2.硅带 当太阳电池成本降到1美元/W的时候具有和常规能源竞争的优势,但是无论是用单晶硅还是多晶硅,都存在严重的切割损耗问题,因此很难将单晶硅或多晶硅电池的成本降低到2美元/W以下。硅带技术最大的优点在于它完全避免了切割过程,从而大大降低基体的生产成本。现在硅带工艺较多,主要有颗粒硅带工艺、EFG工艺等。颗粒硅带工艺就是在保护气氛中将硅粉直接加热、融化、退火冷却得到硅带,现在这种技术已经可以拉制出10cm宽、4m长的硅带,且其拉制速度可以达到30mm/min,并且可以调节。在试验室研究阶段,颗粒硅带制备的太阳电池效率最高已经达到8.25%,成本已经降到0.8美元/W。EFG是唯一投入大规模生产的硅带工艺,它直接从熔融的硅液中拉制出薄的硅带。但是一般的硅带都存在缺陷多,表面平整度不高的问题,给后续工艺和电池效率带来了负面影响,因此如何提高硅带质量是硅带工艺面临的最大挑战。
    3.层剥离技术 在降低成本的同时又取得较高的效率是发展太阳电池制备工艺的最终目标,层剥离技术在这方面有了很大的发展。层剥离工艺概述如下:在悬浮区熔硅的表面用
电化学方法腐蚀出一薄层多孔硅,接着在多孔硅上面生长一层高质的外延层,然后用机械剥离或其他方法将外延层和基体分开,利用剥离下来的外延层制备太阳电池,基体又可以重复利用。利用这种方法已经制备出12μm厚、效率为12.5%的太阳电池。如果能够克服剥离时外延层破碎以及提高剥离速率的难题,层剥离技术应该能得到大规模应用。
    腐蚀和表面织构
    1.表面腐蚀 切割后的硅片表面有一层10~20μm厚的切割损坏层,在电池制备前必须去除,常用的腐蚀剂为加热到80~90℃的20%~30%的NaOH或KOH溶液。由于碱液腐蚀的各向异性,多晶硅的腐蚀不能采用碱性溶液腐蚀,因为如果腐蚀速度过快或腐蚀时间过长,在晶界处会形成台阶,为以后电极的制备带来麻烦。利用各向同性的硝酸、乙酸和混合溶液可以避免这一问题,但是酸液腐蚀速度过快而难于控制,且这种酸液的废液也难以处理。
    2.表面织构 为了有效地降低硅表面的发射,除了沉积减反层外,表面织构也是一个可行的工艺。理想的表面织构(绒面)为倒金字塔形。常用的织构制备方法为机械刻槽法和化学腐蚀法。机械刻槽利用V形刀在硅表面摩擦以形成规则的V形槽,从而形成规则的、
反射率低的表面织构。研究表明尖角为35°的V形槽反射率最低。现在的问题是,如果用单刀抓槽,虽然能得到优质的表面织构,但是成形速度太低,采用多刀同时抓槽又容易破坏硅片。化学腐蚀法可以在硅表面形成不规则的倒金字塔形织构,但是由于多晶硅的各向异性,使得化学腐蚀方法难以应用到多晶硅电池表面织构的制备。
    反应离子刻蚀技术也可以作为形成织构的方法,它首先在硅表面沉积一层镍铬层,然后用光刻技术在镍铬层上印出织构模型,接着就用反应离子刻蚀方法制备出表面织构。用这种方法可以在硅表面制备出圆柱状和锥状织构,其表面发射率最低可以降低到0.4%,而且不论是单晶硅还是多晶硅都适用,只是这种方法费用较高。
    扩散制结 工业中典型的结制备分为两步,第一步用氮气通过液态的POC13,将所需的杂质用载流气体输运至高温半导体表面,杂质扩散深度约几百个纳米。第二步是高温处理,使预沉积在表面的杂质原子继续向基体深处扩散。这样就形成了一个n+/n层,这样的结构有利于后续电极的制备,因为在平面印刷银技术中,n+层不仅可以和金属电极形成欧姆接触,而且可以防止电极制备过程中金属原子扩散进入基体内部。但是有研究指出,好的发射区应当位于基体表面附近,并且只需要一定的掺杂浓度即可。综合后续工艺,
理想的pn结应当具有如下结构:在基体表面附近,除了在指形电极下有一个重掺杂的n+区外,其余的部位都是一般浓度的掺杂。这是因为指形电极下的重掺杂区不仅可以降低接触电阻,以获得好的填充系数,也可以降低电极带来的表面复合损失,而指形电极之间的低电极带来的表面复合损失。而指形电极之间的低掺杂发射区具有较低的界面态,可以得到较好的光谱响应和较高的开路电压。这种发射区结构可以通过改进的两步扩散方法形成,也可以用一步扩散法制得,但是需要增加一个腐蚀过程。用快热方法制结可以大大简化上述过程,但是这种工艺还处于初期研究阶段,对于实际应用还需要大量的研究。
MIS太阳电池采用一种完全不同的制结方法,它通过在p型基体中引入一个n+的反型层。这个反型层是通过基体表面的硅氮减反层中的正电荷诱导产生的,应用这个工工艺可以完全避免扩散制结过程。
沉积减反层和钝化层 抛光的硅表面的反射率为35%,为了减少表面反射,提高电池的转换效率,需要沉积一层减反层,减反层有很多种,可以是SiO2、ZnS、SiNx或是它们的组合。实验室中常采用热氧化法制备SiO2减反层,这种方法可以生成一层高质量的SiO2减反层。SiO2减反层不仅能够减少反射率,而县城还能显著降低Si
-SiO2界面的少子复合速率。但是由于这种方法耗费太高,无法在工业中实现大规模应用。
    用氨和硅烷反应,可以在硅表面形成一层无定形的氮化硅(SiOx)层。氮化硅减反层具有良好的绝缘性、致密性和稳定性,并且它还能阻止杂质原子,特别是Na原子的渗透进入电池基体。理论研究表明,理想的减反层应该是氮化硅减反层和SiO2减反层的组合,这种组合既具有优良的光学性能,又具有稳定钝化性能和良好的阻止杂质原子渗透性能。
    为了提高电池效率,背表面也需要降低反射率和钝化。工业中背表面钝化是利用丝网印刷技术将A1覆盖在硅片上以合金化。铝和硅在577℃时可以生成共晶组织。根据A1-Si二元相图,在加热过程中,会有一种液态的A1-Si相产生,杂质会在融化的区域中偏析,于是液相就相当于一个杂质的湮灭区。当温度降低时,硅会发生再结晶,根据溶解度曲线可知,硅中会溶有一定的铝,形成一个P+的背表面场层。为了能够形成铝硅液态相,铝层需要有足够的厚度(20μm) 但是这种背表面场的制备过程会使晶片产生很大的弯曲变形,硅片越薄弯曲越明显。另外,一种行之有效的方法是局部背表面场技术。
在这种工艺中,不是整个背表面都被电极覆盖,而是只有1%~4%的背表面被局部的背电极覆盖,然后在背表面沉积一层氧化物作为减反层和钝化层,PERL电池就采用了这种工艺。 制备电极 电极的制备是太阳电池制备过程中一个至关重要的步骤,它不仅决定了发射区的结构,而且也决定了电池的串联电阻和电池表面被金属覆盖的面积。传统的电极是采用平面丝网刷镀银粉然后烧结而成,但是这种方法制备的电极具有高的串联电阻和大的表面覆盖率,对电池的效率影响很大。
    1.激光刻槽埋栅 理想的电极应具有低的串联电阻和小的表面覆盖率,为了得到这样的电极,有研究者提出了激光刻槽埋栅电极工艺。这种方法是在表面受到保护的轻掺杂基体上,用激光或者机械的方法刻划出电极槽,经过清洗之后对电极槽,经过清洗之后对电极槽区域进行重掺杂,最后将不同合金按照不同顺序浇注到电极槽内形成电极。用这种方法制备的电极宽度很窄(20~25μm),具有很低的表面覆盖率,而且还具有高的纵深比,能够更好地吸收载流子。目前这种工艺已经在高效大面积的太阳电池上得到了大规模的应用。这种方法的主要缺点是合金中包含的Ni和Cu对环境具有破坏作用,需要额外费用来清除工业废物。
    2.丝网印刷 由于传统的丝网印刷制备电极技术已经成熟并经大面积应用,完全取代它需要花费大量金钱,而且它没有化学废物需要处理,因此如何改进现有的平面印刷技术,使得它的电极宽度(150~200μm)减小到可以和埋覆电极相媲美是一个更切实际的课题。
低压有源滤波

本文发布于:2024-09-21 18:57:58,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/305945.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:表面   电极   制备   方法   沉积   溅射   具有
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议