散热器原理

散热器原理
1章:[散热原理——功耗与热阻]                        1         
第2章:[散热原理——散热方式]                          3
第3章:[散热原理——散热器材质]                        7
第4章:[散热原理——铜铝结合技术]                      9
第5章:[散热原理——热管技术]                          15
6章:[散热原理——加工成型技术]                      18
第7章:[散热原理——底面处理工艺]                      26
第8章:[散热原理——风扇基本原理]                      29
第9章:[散热原理——轴承和叶片]                        34
第10章:[散热原理——接口与扣具]                      41
[散热原理——屏蔽玻璃功耗与热阻]

随着处理器发热量的不断提高,很多有助于散热的新兴技术也飞速发展。如果要深入了解一款散热器的性能必须了解其原理。
功耗
功耗是CPU最为重要的参数之一。其主要包括TDP和处理器功耗

TDP是反应一颗处理器热量释放的指标。TDP的英文全称是“Thermal Design Power”,中文直译是“热量设计功耗”。TDP功耗是处理器的基本物理指标。它的含义是当处理器达到负荷最大的时候,释放出的热量,单位未W。单颗处理器的TDP值是固定的,而散热器必须保证在处理器TDP最大的时候,处理器的温度仍然在设计范围之内。

处理器的功耗:是处理器最基本的电气性能指标。根据电路的基本原理,功率(P)=电流(A)×电压(V)。所以,处理器的功耗(功率)等于流经处理器核心的电流值与该处
理器上的核心电压值的乘积。

处理器的峰值功耗:处理器的核心电压与核心电流时刻都处于变化之中,这样处理器的功耗也在变化之中。在散热措施正常的情况下(即处理器的温度始终处于设计范围之内),处理器负荷最高的时刻,其核心电压与核心电流都达到最高值,此时电压与电流的乘积便是处理器的峰值功耗。
管式反应器
处理器的功耗与TDP 两者的关系可以用下面公式概括:
处理器的功耗=实际消耗功耗+TDP
实际消耗功耗是处理器各个功能单元正常工作消耗的电能,TDP是电流热效应以及其他形式产生的热能,他们均以热的形式释放。从这个等式我们可以得出这样的结论:TDP并不等于是处理器的功耗,TDP要小于处理器的功耗。虽然都是处理器的基本物理指标,但处理器功耗与TDP对应的硬件完全不同:与处理器功耗直接相关的是主板,主板的处理器供电模块必须具备足够的电流输出能力才能保证处理器稳定工作;而TDP数值很大,单靠处理器自身是无法完全排除的,因此这部分热能需要借助主动散热器进行吸收,散热器若设
计无法达到处理器的要求,那么硅晶体就会因温度过高而损毁。因此TDP也是对散热器的一个性能设计要求。

人们也习惯用热阻抗值来对散热器的性能进行标识校正平台

热阻抗值RCJ

热阻抗值是保证CPU在一定的环境温度下(TJ=A℃)执行规定的程序(如P4 Maxpower 6.0 100%),CPU温度保持在规定的最高温度以下(Tc<B℃)。即每一款CPU对以上数据作出的散热要求也就是指明了它所要求的热阻抗值。CPU 散热器热阻抗值必须要在处理器热阻抗值以下,CPU制造厂商才能对其产品保修。可以说热阻抗值的大小的不同反映着一颗CPU工作时对散热要求的差异,不同的CPU因发热功率及允许承受的最高工作温度的不同,对散热方面的要求也不一样,而散热器产品必须要对其所支持的CPU型号提供足够的散热能力。

Tc-Tj=TDP× RJC

等式左边为一定值,对于一款散热器显然是热阻抗值越小,就可以使P值更大,也就是可以承载更大TDP的CPU散热,也就说明性能越好。

对于散热器,我们可以列出如下的等式:
P=H*A*η*△T
P: 散热片与周围空气的热交换总量(W);
H: 散热片的总热传导率(W/CM2*℃),由辐射及对流两方面决定;
A: 散热片表面积(CM2);
η: 散热片效率,由散热片的材料及形状决定;
△T:散热片的最高温度与周围环境温度之差(℃)

可以确定,加工成型后的散热器本体(即散热器中的金属部分)的热阻是固定的,但是更换风扇或者降低环境温度,还是可以改变一款散热器的热阻。
[散热原理——散热方式]

散热就是热量传递,而热的传递方式有三种:传导、对流和辐射。传导是由能量较低的粒子和能量较高的粒子直接接触碰撞来传递能量的方式,CPU和散热片之间的热量传递主要是采用这种方式,这也是最普遍的一种热传递方式。对流是指气体或液体中较热部分和较冷部分通过循环将温度均匀化,目前的散热器在散热片上添加风扇便是一种强制对流法,电脑机箱中的散热风扇带动气体的流动也属于"强制热对流"散热方式。辐射顾名思义就是将热能从热源直接向外界发散出去,该过程与热源表面颜、材质及温度有关,辐射的速度较慢,因此在散热器散热中所起到的作用十分有限(辐射可以在真空中进行)。这三种散热方式都不是孤立的,在日常的热量传递中,这三种散热方式都是同时发生,共同发挥作用的。
 
任何散热器也都会同时使用以上三种热传递方式,只是侧重有所不同。对于CPU散热器,依照从散热器带走热量的方式,可以将散热器分为主动散热和被动散热。前者常见的是风冷散热器,而后者常见的就是散热片。进一步细分散热方式,可以分为风冷,液冷,半导
体制冷,压缩机制冷,液氮制冷等等。
 
风冷散热是最常见的,而且简单易用,就是使用风扇带走散热器所吸收的热量。具有价格相对较低,安装方便等优点。但对环境依赖比较高,例如气温升高以及超频时其散热性能就会大受影响。
           
液冷 是使用液体在泵的带动下强制循环带走散热器的热量,与风冷相比具有安静、降温稳定、对环境依赖小等等优点。液冷的价格相对较高,而且安装也相对麻烦一些。同时安装
时尽量按照说明书指导的方法安装才能获得最佳的散热效果。



半导体制冷:
ESBLS菌“N.P型半导体通过金属导流片链接,当电流由N通过烧镁砖P时,电场使N中的电子和P中的空穴反向流动,他们产生的能量来自晶管的热能,于是在导流片上吸热,而在另一端放热,产生温差”拼装玩具——这就是半导体制冷片的制冷原理。只要高温端的热量能有效的散发掉,则低温端就不断的被冷却。在每个半导体颗粒上都产生温差,一个制冷片由几十个这样的颗粒串联而成,从而在制冷片的两个表面形成一个温差。
利用这种温差现象,配合风冷/水冷对高温端进行降温,使得制冷片的散热效果强劲,但是让制冷片全速运作的前提是供电必须要稳定(一要几时W的功率),或者你需要为制冷片单独设立一个供电设备,这样成本较高,而且如果高温端的散热不到位的话也比较危险。
优点:能使温度降到非常理想的室温以下;并且可以通过使用闭环温控电路精确调整温度,温度最高可以精确到0.1度;可靠性高,使用固体器件致冷,不会对CPU有磨损;使用寿命长。
缺点:CPU周围可能会结露,有可能会造成主板短路;安装比较困难,需要一定的电子知识。比较保险的方法是让半导体制冷器的冷面工作在20℃左右为宜

本文发布于:2024-09-22 15:40:27,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/288552.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:散热   处理器   散热器   功耗   温度   制冷
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议