放大电路

目录
放大的概念数据库探针
放大电路
放大电路的特点
小麦磨粉机
三极管放大电路
放大器类型
放大器使用历史及演化
功率放大器类型
1. A类
2. B与AB类
3. B类
4. C类
5. D类
6. 特殊类型
展开
放大的概念
放大电路
放大电路的特点
三极管放大电路
放大器类型
放大器使用历史及演化
功率放大器类型
1. A类
2. B与AB类
3. B类
4. C类
5. D类
6. 特殊类型
展开
编辑本段放大的概念
  放大的本质是实现
 
放大电路
能量的控制,即能量的转换:用能量比较小的输入信号来控制另一个能源,使输出端的负载上得到能量比较大的信号。放大的对象是变化量,放大的前提是传输不失真。
编辑本段放大电路
  amplification circuit
  增加电信号幅度或功率的电子电路。应用放大电路实现放大的装置称为放大器。它的核心是电子有源器件,如电子管晶体管等。为了实现放大,必须给放大器提供能量。常用的能源是直流电源,但有的放大器也利用高频电源作为泵浦源。放大作用的实质是把电源的
能量转移给输出信号。输入信号的作用是控制这种转移,使放大器输出信号的变化重复或反映输入信号的变化。现代电子系统中,电信号的产生、发送、接收、变换和处理,几乎都以放大电路为基础。20世纪初,真空三极管的发明和电信号放大的实现,标志着电子学发展到一个新的阶段。20世纪40年代末晶体管的问世,特别是60年代集成电路的问世,加速了电子放大器以至电子系统小型化和微型化的进程。放大电路的基本形式有3种:共发射极放大电路共基极放大电路共集电极放大电路。在构成多级放大器时,这几种电路常常需要相互组合使用。
  现代使用最广的是以晶体管(双极型晶体管场效应晶体管)放大电路为基础的集成放大器。大功率放大以及高频、微波的低噪声放大,常用分立晶体管放大器。高频和微波的大功率放大主要靠特殊类型的真空管,如功率三极管或四极管、磁控管、速调管、行波管以及正交场放大管等。
  放大电路的前置部分或集成电路元件变质引起高频振荡产生"咝咝"声,检查各部分元件,若元件无损坏,再在磁头信号线与地间并接一个1000PF0047伏的电容,,"咝咝"声若不消失,则需要更换集成块。
编辑本段放大电路的特点
  放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能瞻前顾后。在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。[1]
编辑本段三极管放大电路
  一、共发射极放大电路
  共发射极放大电路简称共射电路,输入端AA′外接需要放大的信号源;输出端dtt使用浓度BB′外接负载。发射极为输入信号ui和输出信号uo的公共端。公共端通常称为(实际上并非真正接到大地),其电位为零,是电路中其他各点电位的参考点,用“⊥”表示。
  1.电路的组成及各元件的作用
  (1)三极管VNPN管,具有放大功能,是放大电路的核心。
  (2)直流电源VCC使三极管工作在放大状态,VCC一般为几伏到几十伏。
  (3)基极偏置电阻Rb它使发射结正向偏置,并向基极提供合适的基极电流(。Rb一般为几十千欧至几百千欧。
  (4)集电极负载电阻Rc它将集电极电流的变化转换成集-射极之间电压的变化,以实现电压放大。Rc的值一般为几千欧至几十千欧。
  (5熔铜炉)耦合电容C1C2又称隔直电容,起通交流隔直流的作用。C1C2一般为几微法至几十微法的电解电容器,在联结电路时,应注意电容器的极性,不能接错。
  2.放大电路的静态分析:静态是指放大电路没有交流输入信号(ui=0)时的直流工作状态。静态时,电路中只有直流电源VCC作用,三极管各极电流和极间电压都是直流值,电容C1C2相当于开路,其等效电路如图6-22所示,该电路称为直流通路。
  对放大电路进行静态分析的目的是为了合理设置电路的静态工作点(用Q表示),即静态时电路中的基极电流IBQ、集电极电流ICQ和集-射间电压UCEQ的值,防止放大电路在放大交流输入信号时产生的非线性失真。
  三极管工作于放大状态时,发射结正偏,这时UBEQ基本不变,对于硅管约为0.7V,锗管约为0.3V
  3.放大电路的性能指标分析:电压放大倍数、输入电阻和输出电阻是放大电路的三个主要性能指标,分析这三个指标最常用的方法是微变等效电路法,这是一种在小信号放大条件下,将非线性的三极管放大电路等效为线性放大电路。
  三、功率放大电路
  1.功率放大电路的基本概念功率放大电路的任务是输出足够的功率,推动负载工作。例如扬声器发声、继电器动作、电动机旋转等。功率放大电路和电压放大电路都是利用三极管的放大作用将信号放大,不同的是功率放大电路以输出足够的功率为目的,工作在大信号状态;而电压放大电路的目的是输出足够大的电压,工作在小信号状态。
  功率放大电路应满足以下要求:
  (1)输出功率足够大为了获得较大的输出信号电压和电流,往往要求三极管工作在极限状态。实际应用时,应考虑到三极管的极限参数PCMICMU(BR)CEO
  (2)效率高所谓效率是指功率放大电路向负载输出的信号功率与直流电源提供的功率之比。功率放大电路在输出信号功率的同时,晶体管本身也发热损耗功率,称为管耗。显然,为了提高效率,应尽量减小管耗。气路接头
  (3)非线性失真小功率放大电路在大信号的工作状态,很容易产生非线性失真,因此需要采取措施,减小非线性失真。
  2.互补对称功率放大电路
  (1)双电源互补对称功率放大电路双电源互补对称功率放大电路简称OCL电路,V1管和V2管为参数特性对称一致的NPNPNP管,它们的基极连在一起作为输入端,发射极连在一起直接接负载RL。显然,V1管和V2管均为射极输出器接法。
  (2)工作原理
  1)静态工作分析由于V1管和V2管的基极都未加偏置电压,因此静态时,两管都不导通,静态电流为零,管子工作在截止区,电源不供给功率。由于电路对称,因此发射极电位为零,负载上无电流。
  2)动态工作分析设输入信号为正弦电压ui,如图6-30a所示。在正半周时,V1管发射结正偏导通,V2管发射结反偏截止,由+VCC提供的电流ic1V1管流向负载,在负载RL上获得正半周输出电压uo。同理,在负半周时,V1管发射结反偏截止,V2管发射结正偏导通,由-VCC提供的电流ic2-VCC端经负载流向V2管,在RL上获得负半周输出电压uo。可见,在ui的整个周期内,V1管和V2管轮流导通,相互补充,从而在RL上得到完整的输出电压uo,故称为补对称功率放大电路。
  由于V1管和V2管均为射极输出器接法,因此uoui
  (3)交越失真及其消除方法在上述电路中,V1管和V2管的基极都未加偏置电压,静态时UBE=0。由于三极管有一死区电压,当ui小于死区电压时,两管均不导通,输出为零,只有当ui增加到大于死区电压时,管子才导通,因此,当输入正弦电压ui时,在输出电压uo的正负半周交接处出现失真,
  3.集成功率放大电路简介
  集成功率放大电路是将功率放大电路中的各个元件及其联线制作在一块半导体芯片上的整
体。它具有体积小、重量轻、可靠性高、使用方便等优点,因此在收录机、电视机及伺服放大电路中获得广泛应用。
  四、多级放大电路简介
  实际应用中,放大电路的输入信号都是很微弱的,一般为毫伏级或微伏级。为获得推动负载工作的足够大的电压和功率,需将输入信号放大成千上万倍。由于前述单级放大电路的电压放大倍数通常只有几十倍,所以需要将多个单级放大电路联结起来,组成多级放大电路对输入信号进行连续放大。
  多级放大电路中,输入级用于接受输入信号。为使输入信号尽量不受信号源内阻的影响,输入级应具有较高的输入电阻,因而常采用高输入电阻的放大电路,例如射极输出器等。中间电压放大级用于小信号电压放大,要求有较高的电压放大倍数。输出级是大信号功率放大级,用以输出负载需要的功率。
  金属弹片2.多级放大电路的级间耦合方式及特点在多级放大电路中,级与级之间的联结方式称为耦合。级间耦合时应满足以下要求:各级要有合适的静态工作点;信号能从前级顺利传送到后级;各级技术指标能满足要求。
编辑本段放大器类型
  放大器可以依据它们的输入与输出属性区分规格。 依其增益(即输出信号输入信号之间的比例系数)的种类,可区分为电压增益(voltage gain)、电流增益、功率增益(power gain),或是其他的单位。例如,一个转导放大器(transconductance amplifier)的增益单位是电导(输入电压与输出电流)。在多数情况,输入和输出为相同的单位,增益无需标示出单位,虽然经常标示dbdecibels)。
编辑本段放大器使用历史及演化
  放大器电路在不同时期在电子领域中有扮演着不同的角:
  放大器电路被首次用于中继传播设施。例如在旧式电话线路中:用弱电流控制外呼线路的电源电压。
  用于音频广播。范信达(Reginald Fessenden)19061224日,首次把碳粒式麦克风(Carbon microphone)作为放大器,应用于调频广播传送装置中,把声音调制成射频源。
  在20世纪60年代,晶体管开始淘汰。当时,一些大功率放大器或专业级的音频应用(例如吉他放大器和高保真放大器)仍然会采用晶体管放大器电路。许多广播发射站仍然使用真空管。
  20世纪70年代开始,越来越多的晶体管被连接到一块芯片上来制作集成电路。如今大量商业上通行的放大器都是基于集成电路的。
编辑本段功率放大器类型
A
  当对效率要求不高的时候,大多数小信号线性放大器会设计成甲类(A类),即输出级元件总是处于导通区。甲类(A类)放大器一般比其它类型线性度更好,也较为简单,但效率非常低。这类放大器最常用于小信号级或低功率(例如驱动耳机)应用中。
  A类放大器的缺点是输出效率很低,理论值不超过百分之五十。以驱动耳机为例,在一般情况下,音量越小,耗电越多,当机子在没有信号输入时,电流以最大的额度流动,所以在待机没听音乐时,却是用电最快的时候;即使在听音乐时,所用的电也有 50% 以热量形
式消耗掉。所以,一台A放大器的用电量,绝不亚于一台冷气机,而此 50% 的消耗热能,则是让真空管逐渐老化的原因。同时因为发热量太大,所有零件长期工作于大电流、高温下,容易引起稳定度和寿命方面的问题,假如是纯A类真空管综合扩大机,还有管子寿命及日后更换等问题。

本文发布于:2024-09-22 12:25:12,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/272107.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:放大   电路   信号   输出   输入
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议