eDP简介及与DP之差异

eDP简介及与DP之差异
嵌入式DisplayPort(eDP)系视讯电子标准协会(VESA)针对行动装置应用,所制定的新一代面板介面,其不仅传输率更胜传统的低电压差动讯号(LVDS)介面,最新1.4版规格更加入许多降低系统功耗的新功能,可望加速扩大eDP在行动装置市场的渗透率。
个人电脑产业针对嵌入式显示面板的使用需求,于2008年首次发表一个新的影像传输介面标准--嵌入式DisplayPort,又称eDP。eDP逐渐取代旧有的低电压差动讯号(LVDS)传输介面,尤其是在FHD(1,920x1,080或1,920x1,200)或超过FHD解析度的面板上。你可轻易地在各种拥有嵌入式显示面板的产品中到eDP的应用,包含一体成型电脑(All-in-One PC)、笔记型电脑或是平板电脑等。 
eDP是根据DisplayPort标准衍生出来的,随着时间的演进,eDP也发展出许多针对嵌入式显示面板应用需求的独有功能。视讯电子标准协会(VESA)于2012底发表的最新eDP 1.4,即囊括许多降低系统功耗的新功能。 
多数人不是很清楚DisplayPort与eDP的差异,接下来将会比较两者的关系与差异,并说明eDP独有的功能与优点。 
参照DisplayPort标准订定 eDP规格出炉
想要认识eDP,就一定要先了解何谓DisplayPort。在介面底层的基本规范与通讯协定的定义上,eDP完全参照DisplayPort。 
那什么是DisplayPort?DisplayPort系运用在电脑产业里新的影像传输介面,用来取代现行个人电脑(PC)应用上的视讯图形阵列(VGA)与数位影像介面(DVI)介面,并代替高解析度多媒体介面(HDMI)。相较于旧有的介面,DisplayPort有很多优势,因为采用交流耦合(AC Coupling)与低电压摆动(Low Voltage Swing)的设计,可相容于次微米(Submicron)制程,能直接整合进各种影像输出元件,如中央处理器(CPU)、绘图处理器(GPU)、应用处理器(Application Processor)等;而在影像讯号接收端,亦可直接应用在同样使用次微米制程、复杂且高度整合的缩放控制器(Scalar)与液晶面板时脉控制晶片(Timing Controller, TCON)上。 
DisplayPort(包含eDP)是唯一运用封包传输影像与声音资讯的影像介面,因此可以持续增加新的功能,同时维持良好的向下相容性。DisplayPort(包含eDP)是目前性能最好的显示介面,可以传输解析度4K的面板每秒60帧画面与30位元彩的资料量,也是唯一可透过集
线器(Hub)或菊链(Daisy Chain),仅用一个输出装置即可驱动数台监视器的显示介面(eDP并未支援)。DisplayPort还可用于各种外接的显示转接器(Dongle),如DisplayPort转VGA、DVI或HDMI等。 
影像处理晶片可用同一个输出实体层支援DisplayPort与eDP。eDP与DisplayPort有许多不同,最大的不同在于eDP是特别针对如笔记型电脑、平板电脑等会用到电池的环境来设计,而DisplayPort则通常于有外接电源的状况下使用。因此,功耗效率对eDP而言非常关键,它也不支援多重萤幕显示。 
与DisplayPort相同 eDP具备三大基本架构
以下将简单说明DisplayPort的基本架构,包含DisplayPort资料传输主要通道(Main Link)、附属通道(AUX Channel)与连接(Link Training)。 
洗衣机水嘴主要通道传输影音资料
如前面所述,DisplayPort采用交流耦合讯号可与现在或未来使用的次微米半导体制程相容;而资料编码协定则采用与通用序列汇流排(USB)、PCI Express(PCIe)、SATA等其他
序列式资料传输介面相同的8b/10b编码方式,透过该种编码方式,仅需一对差分讯号线(Differential Signal Pair)即可同时传输资料与时脉讯号,不像LVDS、DVI、HDMI等需要独立的时脉讯号线。此外,DisplayPort传输资料是打乱的(Scrambled),再加上完全没有时脉讯号,大大降低使用旧有影像传输介面的行动装置系统搭载无线连接功能后,常有的射频干扰(RFI)问题,它改善系统无线传输的效能,同时也减低屏蔽RFI设计的需求。 
DisplayPort标准的连接器包含四对差分讯号线,或称四条主要通道,利用主要通道传输影像资料,并可根据显示资料量的多寡选择使用一条、二条或四条通路(Lane)传输资料。此外,DisplayPort定义三种不同传输速率,每一条通路皆可选择使用1.62Gbit/s、2.7Gbit/s或5.4Gbit/s传输。由于DisplayPort运用8b/10b编码法,编码后会多增加一些资料位元,因此实际上能支援的最高资料传输速率为: 
(4通路)x(5.4Gbit/s每通路)x(8/10 Coding Overhead)=17.28Gbit/s。 
DisplayPort有个重要的特,与其他影像传输介面不同,亦即传输速率不会随着显示画素速率(Pixel Rate)更改,它用的是固定的传输率,类似一个普通的资料传输通道,所以可以用在各种不同的应用上,例如有着不同时脉要求的多重萤幕显示;此外,采用固定的传输
率也更能优化与高速传输介面相关的电路设计,电磁干扰(EMI)与RFI的现象也比较能预期。 
DisplayPort影像资料是以微封包(Micro-Packets)形式传输,并给予适当的间隔来适应画素时脉速率(Pixel Clock Rate);而主要通道同时也传输CEA-861 InfoFrame资料、音源资讯取样频率(Audio Stream Sample Rate)讯息、音源资讯(Audio Streaming),以及主要资讯流属性资料(Main Stream Attribute Data),如画素速率、影像格式(Video Framing)与显示器时脉资讯(Monitor Timing Data)等资料封包。 
AUX通道用以传输设定与指令
数码彩扩DisplayPort连接器也包含一条独立的双向传输辅助通道,称作AUX通道或简称为AUX,一样是使用两条差分讯号线,单一方向速率仅1Mbit/s左右,用来传输设定与控制指令,后面也会谈到更多在eDP上的用途。 
AUX的用途包括读取延伸显示能力识别资讯(EDID),以确保传送正确的影像格式(其他介面如LVDS、VGA、DVI与HDMI则是透过I2C传送);读取显示器所支援的DisplayPort项目内
容,如多少条主要通道、传输速率及其他项目;设定各种显示组态暂存器;读取显示器状态暂存器。 
EDID是统一制定的,与显示介面无关,此外,其他暂存器皆位于DisplayPort接收端的DPCD(DisplayPort Configuration Data)暂存器。 
连接过程有助强化主要通道可靠度超声波马达
连接是另外一个关于DisplayPort一定要了解的部分。连接是DisplayPort讯号传送端(Transmitter)与讯号接收端(Receiver)在正式传送资料前建立连结的过程。基本上,在连接的过程中,传送端会调整不同的电压摆动振幅与其他讯号特性(Pre-emphasis)直到调整到接收端理想的位准。传送端与接收端透过AUX彼此沟通,确定连接是否成功,而连接可增加主要通道的可靠度,减低资料错误,并可补偿因不同长度、种类的缆线所导致的电性差异,尤其是传送端与接收端系统板上讯号走线所造成的差异。它也可以补偿因缆线、连接器损伤或硬体老化所产生电性变化。连接在DisplayPort连接上电后即开始作动,在正式传输影像资料前,连接会传输一连串特殊的资料样式(Pattern),输出端(Source)能送出四种不同的讯号振幅与四种不同讯号特性位准。  螺纹套套
整个连接过程大约会花掉500微秒到几微秒不等,取决于要做多少次的调整。  应变测量
絮凝沉淀池
eDP独有功能介绍
最新的eDP 1.4版本参照DisplayPort v1.2a。虽然DisplayPort是eDP的基础规格,但eDP并未完全复制DisplayPort所有规范。有些在DisplayPort定义中的功能,现行eDP就不支援,如用来支援多重显示器的MST(Multi-Stream Technology)即是一例。 
接下来针对eDP特有功能做简单说明,包含实体介面(Physical Interface)、供电顺序(Power Sequencing)、连接、影像认证与内容保护、不同显示刷新率(Variable Frame Rate)、透过AUX通道控制背光或其他面板功能、面板自动刷新(Panel Self Refresh, PSR)、降低主要通道与AUX通道电压摆动、传输速率选择、显示资料压缩、透过AUX传输多点触控资料以及相容性测试。 
实体介面因不同系统组合而异
外接式的DisplayPort要求使用标准化的连接器,并透过标准的DisplayPort缆线连接各种不同装置,但eDP适用于封闭系统内,会连接的装置完全由系统原始设备制造商(OEM)控制,
因此eDP没有定义连接器或缆线标准,仅为各种不同系统组合制定连接器端子定义(Pin Assignment),这些差异来自于使用多少条主要通道的显示面板,和使用哪种形式的背光。 
现在市面上大多数的eDP面板都使用三十接脚的连接器,最多支援两条主要通道,同时搭载LED驱动晶片,或者使用四十接脚连接器,最多支援四条主要通道,同样搭载LED驱动晶片,适用于高解析度面板应用。 
举例来说,若将eDP速率拉到5.4Gbit/s,仅需一条主要通道即可支援解析度1,920x1,200、60Hz、24位元颜深度的面板,然若在主要通道传输路径上,面板有使用CoG(Chip-on-Glass)形态的导体,此面板可能就须要将传输速率降至1.62Gbit/s方能正常接收显示,此时该面板则需四条主要通道才够;若传输速率没有特别限制时,不一定非得选择5.4Gbit/s不可,也可选用2.7Gbit/s降低整体系统功耗,以延长电池寿命。在大多数系统设计架构下,一条5.4Gbit/s的主要通道所产生的功耗会大于两条2.7Gbit/s主要通道,此因5.4Gbit/s对DisplayPort接收端性能要求更高,对等化器的性能要求也更高,方能减低高速传输下,由传输路径所造成的讯号失真影响。 

本文发布于:2024-09-22 03:55:18,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/266795.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:传输   显示   资料   介面   通道
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议