流体力学论文伯努利原理及其效应

gtem小室伯努利原理及伯努利效应举例
流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。
17世纪,力学奠基人牛顿研究了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程。伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系--伯努利方程。欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,开始了用微分方程和实验测量进行流体运动定量研究的阶段。
在一个流体系统中,比如气流、水流中,流速越快,流体产生的压力就越小,这就是被称为“流体力学之父”的丹尼尔·伯努利发现的“伯努利定律”。丹尼尔·伯努利在1726年提出的“伯努利原理”,是在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。即:动能+重力势能+压力势能=常数。其最为著名的推论为:等高流动时,流速大,压力就小。简单的说就是,流体沿着一条有宽有窄的沟向前流动时,在沟的狭窄部分,它会流得快些,并且压向沟壁的力也会比宽的部分要小;而在宽的部分,它就要流得慢些,且压向沟壁的力也比较大些。这就是为什么在超车时两车之间会电子散热扇
有吸力的原因。具体来说,当两辆车同方向开时,两车中间就有了一条“沟”——普通的沟,沟壁不动,气体在动,这里相反,是气体不动,沟壁在动。但这里产生力的作用,却一点没有改变:这条会动的沟中的狭窄部分,气体对沟壁所施的压力,要比它对车辆周围空间所施的压力要小——也就是说,两车内侧在空气里受到的压力,要比两车外侧部分受到的压力要小。这样导致的结果便是,车在外侧气体的压力下,比较轻的车自然会移动得显著些,大车由于比较重,看不出什么移动,它几乎仍然留在原处——这就是小车快
速在大车旁边开过时,会出现特别强大的吸引力的缘故。另外需要说明的是,根据伯努利原理,受空气压力的影响,超车时车速越快,“沟”内侧的压力就越小,相对来说车体外侧的压力就变大了。tr069
生活中还有很多例子。应用举例:
甲醇燃料灶
1.飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流
透风窗
线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。
mcu解密2.喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的
压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气
流的冲击,被喷成雾状。
3.汽油发动机的汽化器,与喷雾器的原理相同。汽化器是向汽缸里供给燃料与空气的
混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。
4.球类比赛中的"旋转球"具有很大的威力。旋转球和不转球的飞行轨迹不同,是
因为球的周围空气流动情况不同造成的。不转球水平向左运动时周围空气的流线。
球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,转动轴通过球心且垂直于纸面,球逆时针旋转。球旋转时会带动周围得空气跟着它一起旋转,至使球的下方空气的流速增大,上方的流速减小,球下方的流速大,压强小,上方的流速小,压强大。跟不转球相比,旋转球因为旋转而受到向下的力,飞行轨迹要向下弯曲。

本文发布于:2024-09-23 00:40:59,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/254066.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:空气   流体   压力
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议