利用PyTorch自定义数据集实现猫狗分类

利⽤PyTorch⾃定义数据集实现猫狗分类
看了许多关于PyTorch的⼊门⽂章,⼤抵是从torchvision.datasets中⾃带的数据集进训练,导致很难把PyTorch运⽤于⾃⼰的数据集上,真正地灵活运⽤PyTorch。
这⾥我采⽤从Kaggle上下载的猫狗数据集,利⽤⾃定义数据集训练⾃⼰的⼆分类神经⽹络。
解压后,⼀个⽂件⾥⾯有12500张图,猫狗各⼀半,⽂件名类似于这样:cat.0.jpg、dog.12499.jpg
因为只是练⼿,所以不⽤这么⼤的,仅仅采⽤⼦数据集。
利⽤Python的os库,将数据集进⾏拆分。分为train与test两个⽂件架,每个⾥⾯都有cats和dogs两个⽂档。train⾥⾯每种动物有1000张图,test⾥⾯每种动物有500张图。图⽚⼤概是这个样⼦(⼤⼩不⼀):带隙基准
接下⾥开始编码:
# 导⼊库
import torch旋压皮带轮
as nn
functional as F
import torch.optim as optim
from torchvision import datasets, transforms
# 设置超参数
BATCH_SIZE = 50
EPOCHS = 30
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 数据预处理
transform = transforms.Compose([
transforms.RandomResizedCrop(150),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
# 读取数据
root = 'Cats_Dogs'
dataset_train = datasets.ImageFolder(root + '\\train', transform)
dataset_test = datasets.ImageFolder(root + '\\test', transform)
# 导⼊数据
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)煤矿井下定位系统
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True)
# 定义⽹络
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.max_pool1 = nn.MaxPool2d(2)
self.max_pool2 = nn.MaxPool2d(2)
self.max_pool3 = nn.MaxPool2d(2)
self.max_pool4 = nn.MaxPool2d(2)
self.fc1 = nn.Linear(6272, 512)
self.fc2 = nn.Linear(512, 1)
def forward(self, x):
in_size = x.size(0)
x = v1(x)
x = F.relu(x)
x = self.max_pool1(x)
x = v2(x)
x = F.relu(x)
x = self.max_pool2(x)
x = v3(x)
电镀阳极板
x = F.relu(x)
x = self.max_pool3(x)
x = v4(x)
x = F.relu(x)
x = self.max_pool4(x)
# 展开
x = x.view(in_size, -1)
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
x = torch.sigmoid(x)
return x
# 实例化模型并且移动到GPU
model = ConvNet().to(DEVICE)
# 选择简单暴⼒的Adam优化器,学习率调低
optimizer = optim.Adam(model.parameters(), lr=1e-4)
# 定义训练过程
def train(model, device, train_loader, optimizer, epoch):
for batch_idx, (data, target) in enumerate(train_loader):
浆仓库
# 由于评论区⼩伙伴的提醒,我现在发现这⾥更好的做法是利⽤unsqueeze()增加⼀个维度⽽不是reshape,否则要是提取的不是50的倍数就会报错(例如最后⼀个        data, target = (device), (device).float().unsqueeze(-1)
<_grad()
output = model(data)
应用集成# print(output)
loss = F.binary_cross_entropy(output, target)
loss.backward()
optimizer.step()
if(batch_idx+1)%10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, (batch_idx+1) * len(data), len(train_loader.dataset),
100. * (batch_idx+1) / len(train_loader), loss.item()))
# 定义测试过程
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
_grad():
for data, target in test_loader:
data, target = (device), (device).float().unsqueeze(-1)
output = model(data)
# print(output)
test_loss += F.binary_cross_entropy(output, target, reduction='sum').item() # 将⼀批的损失相加
pred = sor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device)
correct += pred.eq(target.long()).sum().item()
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
# 训练
for epoch in range(1, EPOCHS + 1):
train(model, DEVICE, train_loader, optimizer, epoch)
test(model, DEVICE, test_loader)
在2000张图⽚上,我们利⽤⼩的深度神经⽹络,训练出了⼀个正确率为72%的分类器。虽然结果不太理想,但是在没有进⾏任何防⽌过拟合操作的情况下,还算是过得去的成绩。如果添加Dropout或者正则化、数据增强的话,相信结果会有不错的提升。⽽我们使⽤的数据才是整个数据集的很⼩⼀部分⽽已。

本文发布于:2024-09-22 11:39:43,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/215562.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:数据   训练   集进   结果   报错   学习
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议