灵芝多糖的提取

灵芝多糖提取
近年来,药理学和免疫学的多方研究表明,灵芝多糖芝扶正固本最有效的成分之一,具有广泛的药理活性,排毒、抗放射,提高肝脏、骨髓合成dnabna的能力,抗肿瘤增强机体免疫等效果。因此多糖的提取为广大科研人员药研制者所重视,他们不断研究和探索灵芝多糖提取的方为弄清灵芝多糖的化学成分提供有力的理论依据,同时为许多疾病患者带来福音。
  一、灵芝茵丝体多糖的提取
  (一)材料
  1.菌种:湖南省食用菌研究所提供的韩国灵芝母种。
  2.种子培养基:玉米粉2 大米粉2
  蔗糖2 磷酸二氢钾o.1g
  硫酸镁0.05 ph值自然
  3.发酵培养基:麦麸浸出液10 葡萄糖2
  硫酸铵0.2
  磷酸二氢钾0.2 ph值自然
  (二)方法
  1.种子培养:
  2.发酵培养生产菌丝体。
  3.测定干、湿菌丝体。
  将发酵液进行离心,然后取其沉淀物,加人60%蔗糖,进行高速(3000转/分)密度梯度离心5分钟,取上层菌丝体,洗净蔗糖再压干,即得湿菌体,然后再将湿菌体于高温下烘干即为干菌体。分别称取其重量。
  4.多糖的提取。
  (1)菌丝体预处理。取适量的灵芝湿菌体,用乙醇等有机溶剂进行处理,以除去湿菌体中的脂类物质,同时使糖苷酶失去活性,防止多糖的降解。
  (2)用热水提取多糖。取上面经预处理的灵芝湿菌体,放人120的热水(95)中浸提,一次3小时,连续浸提3次,合并3次的水浸提液减压、浓缩至一定体积,再用3倍体积的95%乙醇混合,静置1012小时,再离心,最后加入75%的乙醇反复洗涤,以沉淀多糖。此沉淀物为粗多糖,其中混杂有蛋白质、素、低聚糖等小分子杂质,一般要经过纯化。
  (3)多糖的纯化,去蛋白质和deae纤维素柱层析。去蛋白质一般采用sevag法:加入0.2倍多糖溶液体积的氯仿和0.04倍体积的正丁醇混合振荡半小时进行分离,直至氯仿与水的界面无沉淀为止,且要重复处理2-3次才能有效除去多糖中的蛋白质。多糖纯化一般采用硼酸型deae纤维素柱层析法:取脱蛋白后的多糖,分别以0.025moll0.1mol/l的硼砂,0.1mol/l的氢氧化钠溶液进行洗脱,然后用0.2%恿铜硫酸液比测定吸收度,收集有多糖的洗脱液,再浓缩脱盐即得所需的多糖。
  (4)多糖纯度的鉴定。
  可用电泳法进行鉴定,如果存在单一带,说明为纯多糖。
  5.多糖与多糖中蛋白质含量的测定:
  取一定量菌丝体粗多糖,加水煮沸溶解,用sevag方法脱去蛋白考马斯亮兰法测其粗多糖中蛋白质和多糖的含量。测得菌丝体中粗多糖含17.01%、多糖含5.43%、蛋白质含量2.16%。
  二、灵芝子实体多糖的提取
  (一)材料
  1.菌种:韩国灵芝栽培种。
  2.子实体栽培生产料:木屑78%,米糠20%,蔗糖1%,
  石膏1%,ph值自然。
  (二)方法
  1.子实体栽培。
  2.灵芝子实体预处理。
冰雕模具  3.子实体多糖的提取。
  取适量的灵芝子实体,捣碎成粉末,用80目筛过筛,然后用热水提取法进行提取。具体操作同菌丝体多糖的提取。提取出的粗多糖含有素、蛋白质等小分子杂质,也须除去。
  4.去除蛋白质和素。
  子实体粗多糖去除蛋白质也采用se阴法。去除素,目前尚未发现很理想的方法。一般用乙醇进行反复冲洗,但效果不很理想。
  5.多糖纯度的鉴定。
  同菌丝体多糖纯度的鉴定。
  6.子实体粗多糖、多糖及蛋白质含量的测定。
  具体方法同菌丝体多糖及蛋白质含量的测定。测得子实体中粗多糖7.5%、多糖1.5%,蛋白质0.6%,其含量均低于菌丝体中的含量。可见菌丝体阶段就形成了灵芝多糖的有效成分,为灵芝液体深层发酵生产菌丝体提供了科学依据。
中药多糖的提取分离工艺研究
多糖是由单糖连接而成的多聚物,人们对多糖的研究已经有很长时间的历史,对多糖的初始研究可追溯到1936Shear对多糖抗肿瘤活性的发现,至20世纪50年代,陆续发现一些真菌多糖和高等植物多糖具有明显的抑瘤活性。最近又发现许多中药多糖还具有降血糖作用。70年代以来,科学家们发现多糖及糖复合物在生物体内不仅是作为能量资源和构成材料,重要的是它存在于一切细胞膜结构中,参与生命现象中细胞的各种活动。多糖类物质是所有生命有机体的重要组成部分,广泛存在于动物、植物、和微生物细胞壁中,是生物体内除核酸和蛋白质以外的又一类重要的生物分子。科学研究已经确认糖类物质具有许多生物活性,包括抗肿瘤、免疫、降血糖和抗病毒等,而且对机体几乎无毒副作用。中药多糖因具有增强机体免疫功能及抗肿瘤降血糖等药理作用,而且几乎没有毒性与副作用,因此引起国内外药理学家、生物学家和化学家们的关注。
  1.多糖的提取工艺
  1.1 水提法
  用水作溶剂来提取多糖是最常用的方法之一,可以用热水浸煮提取,也可以用冷水浸提。水提取的多糖多数是中性多糖。一般植物多糖提取多数采用热水浸提法,该法所得多糖提取液可直接或离心除去不溶物;或者利用多糖不溶于高浓度乙醇的性质,用高浓度乙醇沉淀提纯多糖;但由于不同性质或不同相对分子质量的多糖沉淀所需乙醇浓度不同,它也可以用于样品中不同多糖组分的分级分离;还可按多糖不同性质在粗分阶段利用混合溶剂提取法对植物中不同的多糖进行分离;其中,以乙醇沉淀最为普遍。
  用100g去核枣粉,加入250mL适当体积分数的乙醇,45水浴回流脱脂两次,离心分离后枣渣加水共3500mL90水浴搅拌浸提8h,离心分离,合并所得多糖提取液;提取液45减压浓缩,浓缩液用无水乙醇沉淀,离心分离,得粗多糖沉淀;粗多糖加水溶解后,氯仿、正丁醇脱蛋白,用NaOH溶液调pH值至弱碱性,加0.4倍多糖液体积的H2O240水浴保温4h脱;脱液对蒸馏水透析24h,无水乙醇沉淀,离心分离,45真空干燥,得到大枣多糖。根据预实验,选择对水冷浸提取工艺有影响的主要因素:加水量、提取时
间、提取次数及是否搅拌,按L934)进行正交试验。按常规,将中药的水冷浸条件设为中间水平,分别再取高低两水平。最后得出枸杞多糖的最佳提取工艺为:取枸杞药材,第一次加水l0倍,以后每次加水8倍量,共冷浸3次;每次冷浸1h;每小时搅拌10min.溶剂提取为常用的传统方法之一,有自身的优点。如不需特殊设备,成本低等,但此法往往提取效率低且费时,因此,近年来,伴随着现代工业工程技术的迅猛发展,一些现代高新技术不断被应用到植物多糖的提取中。
  1.2 酸提法
  有些多糖适合用稀酸提取,并且能得到更高的提取率。将热水浸提过的阿魏侧耳子实体残渣加8倍量的3%的三浸提,15过夜,过滤,离心,将提取液用20%NaOH中和至pH7,浓缩、醇析沉淀、丙酮洗涤、真空冷冻干燥得酸提水溶性粗多糖PFA.从对海蒿子多糖的提取方法研究发现,从硫酸根含量及粗多糖产率看,酸提方法优于水提方法。
  其具体酸提方法如下:取100g海蒿子干粉,加入1000ml0.1mol/LHCl溶液提取,室温搅拌1h后过滤,重复操作三遍,合并滤液滤液减压浓缩至总体积的1/5,再加入95%乙醇至乙醇浓度达30%,沉淀,离心除去沉淀中的褐藻酸。继续向上清液中加入乙醇至乙醇浓度达70
%,室温放置过夜使沉淀完全,离心,沉淀干燥得海蒿子粗多糖C2.多次试验算得平均产率为3.35%.在茜草多糖提取研究中,发现相对于水提,以稀酸提取茜草多糖,产品纯度较高。具体方法如下:茜草根粗粉1000g5%HC1扩阴器浸泡,离心,取上清液加入EtOH并调节至浓度为70%,静置,2500rpm离心,收集棕沉淀物,95%EtOH洗涤3扬声器结构次,以4%HCl溶解,加1%活性炭脱,真空抽滤,滤液过夜,弃去容器底部少许沉淀物,溶液置透析袋内,逆水法透析3日,冷冻干燥,得白粉末约10g(多糖A)。酸提法有其特殊性,只在一些特定的植物多糖提取中占有优势,报道的并不多。而且即使有优势,在操作上还应严格控制酸度,因为酸性条件下可能引起多糖中糖苷键的断裂。
  1.3 碱提法
  与酸提类似,有些多糖在碱液中有更高的提取率,尤其是提取含有糖醛酸的多糖及酸性多糖。采用稀碱提取:多为0.1mol/L氢氧化钠、氢氧化钾,为防止多糖降解,常通以氮气或加入硼氢化钠或硼氢化钾。HayashiKatsuhiko发明了从绿藻类中提取酸性多糖的方法,而种多糖用常规的热水法是无法得到的。具体过程为:将干燥的绿藻粉末制成浮液,热水浸泡提取或将含水绿藻直接用热水提取后离心分离,取黏稠的固状物,加入碱水,在pH3.
0的条件下再行搅拌提取,碱水提取液在搅拌的同时加入酸水调节pH值至34,静置沉降后离心得酸性多糖。同样,碱提优势也是因多糖类的不同而异。与酸提类似,碱提中碱的浓度也应得到有效控制,因为有些多糖在碱性较强时会水解。另外,稀酸、稀碱提取液应迅速中和或迅速透析,浓缩与醇析而获得多糖沉淀。分别称取4种动物材料3份,每份50g,做平行实验:加100mL0.1mol/LNaOH溶液,在60水浴中保温24h,冷却后,用三调pH4左右,6000r/min离心l5min,取上清液加2倍体积乙醇摇匀,出现絮状沉淀后静置,取沉淀加适量90%乙醇振荡,静置,倒出上清液。用无水乙醇处理2次,过滤,沉淀再用无水乙醇洗2次,将沉淀摊于平皿上50烘干,得粗品。粗品经糖含量、蛋白含量测定后,加入适量水重新溶解,加0.5倍体积酒精摇匀,静置片刻后,6000r/min离心15min,除去蛋白杂质。上清液中再加入酒精,至乙醇体积分数约60%,摇匀后静置,待沉淀后,小心将上清液倒出,沉淀中加入适量90%酒精和无水乙醇2次脱水,过滤后沉淀再用无水乙醇洗2次,摊于平皿上,50菠萝去皮机烘干,得到多糖精品。
  1.4 超声提取法
  超声波作为一种先进的提取方法,具有提取时间短、能耗低、效率高等特点,在生产中得
到了广泛的应用。其主要原理就是超声波产生空化作用,这种空化作用能够产生局部的高温高压,并形成强大的冲击波或高速射流,这种强大的高速射流能够有效地减小、消除与水相之间的阻滞层,加大了传质效率。同时,高速射流对植物细胞组织产生一种物理剪切力,使之变形、破裂并释放出内含物,这就大大加速了萃取过程。另外,超声波的许多次级效应如热效应、溶化、扩散、击碎、化学效应、生物效应、凝聚效应等也能加速植物有效成分在溶剂中的扩散释放,促进植物有效成分与溶剂混合,有利于萃取。
  (1)分别称取200g青钱柳叶预处理原料,按原料与蒸馏水质量比为1n10加入蒸馏水,功率分别为40060080010001200W超声提取40min,测定多糖的含量,平行试验3次。
  (2)时间对青钱柳多糖得率的影响。分别取200g青钱柳叶预处理原料,用1000W功率,料液比为硫酸钙晶须1n10,超声时间分别为10305070min,测定多糖的含量,平行试验3次。料液比对青钱柳多糖得率的影响。分别称取200g青钱柳叶预处理原料,料液比分别为181101吹管消声器15120,用1000W超声功率提取,时间为30min,测定多糖的含量,平行试验3次。通过比较发现在800W50min效果最好。超声处理可使南瓜多糖的提取时间
缩短,在一定范围内随着超声波的使用功率的增大,提取所得的南瓜总糖、还原糖和多糖的产量也随之提高,温度与超声波可以协同作用,共同提高南瓜多糖的提取率。超声60min多糖得率及含量均最高,因此超声提取多糖的优化工艺为大枣渣加40倍体积水,超声60min70%的乙醇沉淀。
  1.5 微波提取
  对微波技术的应用,近年来得到很大发展。微波是频率介于300MHz300GHz之间的电磁波,微波提取的原理是微射线辐射于溶剂并透过细胞壁到达细胞内部,由于溶剂及细胞液吸收微波能,细胞内部温度升高,压力增大,当压力超过细胞壁的承受能力时,细胞壁破裂,位于细胞内部的有效成份从细胞中释放出来,传递转移到溶剂周围被溶剂溶解。微波具有穿透力强、选择性高、加热效率高等特点。微波辐射(MWI)可以大大加快反应速度,缩短反应时间。微波技术应用于植物细胞破壁,有效地提高了收率。医学教`育网收集整理对荔枝多糖用微波法进行了提取,荔枝干去壳核,60热水浸泡20min.然后打浆,微波提取,浸提液趁热过滤,离心(5000r/min15min),真空浓缩至原体积1/4,用95%酒精调至溶液乙醇含量为80%,静置过夜,离心(5000r/min10min),沉淀依次用适量80
%乙醇、无水乙醇洗两遍,真空冷冻干燥得荔枝粗多糖。在微波浸提与热水浸提比较的基础上,进行了紫菜多糖微波提取工艺正交优化试验和微波不同提取方式对紫菜多糖提取率的影响研究。结果表明:微波提取优于热水提取,微波冻融提取效果最佳,提取率最高达7.45%,而热水提取率为2.05%.影响微波浸提的主要因素为浸提时间,其次是微波功率和液固质量比。优选方案为微波功率200W、提取时间8min、水与紫菜液固质量比40n1.真空冷冻干燥紫菜多糖质量明显优于减压热风干燥和常压热风干燥。微波提取法具有提取时间短,提取率高,是强化固液提取过程颇具发展潜力的新型辅助提取技术。

本文发布于:2024-09-22 04:21:11,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/198791.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:多糖   提取   微波   沉淀
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议