光纤激光器的详细介绍

光纤激光器的详细介绍
光纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设,作为其他激光器的泵浦源等等。
工作原理
光纤是以SiO2为基质材料拉成的玻璃实体纤维,其导光原理是利用光的全反射原理,即当光以大于临界角的角度由折射率大的光密介质入射到折射率小的光疏介质时,将发生全反射,入射光全部反射到折射率大的光密介质,折射率小的光疏介质内将没有光透过。普通裸光纤一般由中心高折射率玻璃芯、中间低折射率硅玻璃包层和最外部的加强树脂涂层组成。光纤按传播光波模式可分为单模光纤和多模光纤。单模光纤的芯径较小,只能传播一种模式的光,其模间散较小。多模光纤的芯径较粗,可传播多种模式的光,但其模间散较大。按折射菲菲内部可分为阶跃折射率光纤和渐变折射率光纤。
以稀土掺杂光纤激光器为例,掺有稀土离子的光纤芯作为增益介质,掺杂光纤固定在两个反射镜间构成谐振腔,泵浦光从M1入射到光纤中,从M2输出激光。当泵浦光通过光纤时,光纤中的稀土离子吸收泵浦光,其电子呗激励到较高的激发能级上,实现了离子数反转。反转后的粒子以辐射形成从高能级转移到 基态,输出激光。
类型
按照光纤材料的种类,光纤激光器可分为:
1、晶体光纤激光器。工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和nd3+YAG单晶光纤激光器等。
2、非线性光学型光纤激光器。主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。
3、稀土类掺杂光纤激光器。光纤的基质材料是玻璃,向光纤中掺杂稀土类元素离子使之激活,而制成光纤激光器。
4、塑料光纤激光器。向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。
按增益介质分类为:
a)晶体光纤激光器。工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和Nd3+:YAG单晶光纤激光器等。
b)非线性光学型光纤激光器。主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。
c)稀土类掺杂光纤激光器。向光纤中掺杂稀土类元素离子使之激活,(Nd3+Er3+Yb3+Tm3+等,基质可以是石英玻璃、氟化锆玻璃、单晶)而制成光纤激光器。
d)塑料光纤激光器。向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。
(2)按谐振腔结构分类为F-P腔、环形腔、环路反射器光纤谐振腔以及“8”字形腔、mide-008DBR光纤激光器、DFB光纤激光器等。
(3)按光纤结构分类为单包层光纤激光器、双包层光纤激光器、光子晶体光纤激光器、特种光纤激光器。
(4)按输出激光特性分类为连续光纤激光器和脉冲光纤激光器,其中脉冲光纤激光器根据其脉冲形成原理又可分为调Q光纤激光器(脉冲宽度为ns量级)和锁模光纤激光器(脉冲宽度为psfs量级)
(5)根据激光输出波长数目可分为单波长光纤激光器和多波长光纤激光器。
(6)根据激光输出波长的可调谐特性分为可调谐单波长激光器,可调谐多波长激光器。
(7)按激光输出波长的波段分类为S-波段(1460~1530 nm)C-波段(1530~1565 nm)L-波段(1565~1610 nm)
(8)按照是否锁模,可以分为:连续光激光器和锁模激光器。通常的多波长激光器属于连续光激光器。
按照锁模器件而言,可以分为被动锁模激光器和主动锁模激光器。
其中被动锁模激光器又有:
等效双面胶贴稻壳发电/假饱和吸收体:非线性旋转锁模激光器(8字型,NOLMNPR)
真饱和吸收体: SESAM或者纳米材料(碳纳米管或者石墨烯)
优势
周广普光纤激光器作为第三代激光技术的代表,具有以下优势:
1)玻璃光纤制造成本低、技术成熟及其光纤的可饶性所带来的小型化、集约化优势;
2)玻璃光纤对入射泵浦光不需要像晶体那样的严格的相位匹配,这是由于玻璃基质Stark 分裂引起的非均匀展宽造成吸收带较宽的缘故;
3)玻璃材料具有极低的体积面积比,散热快、损耗低,所以转换效率较高,激光阈值低;
4)输出激光波长多:这是因为稀土离子能级非常丰富及其稀土离子种类之多;
5)可调谐性:由于稀土离子能级宽和玻璃光纤的荧光谱较宽。
6)由于光纤激光器的谐振腔内无光学镜片,具有免调节、免维护、高稳定性的优点,这是传统激光器无法比拟的。
7)光纤导出,使得激光器能轻易胜任各种多维任意空间加工应用,使机械系统的设计变得非常简单。
8)胜任恶劣的工作环境,对灰尘、震荡、冲击、湿度、温度具有很高的容忍度。
正弦波信号发生器9)不需热电制冷和水冷,只需简单的风冷。
10)高的电光效率:综合电光效率高达20%以上,大幅度节约工作时的耗电,节约运行成本。
11)高功率,商用化的光纤激光器是六千瓦。
高功率光纤激光器的包层技术
与传统光纤激光器相比,双包层光纤激光器采用具有双包层结构的掺杂光纤作为工作介质。泵浦光在多模内包层中传输,内包层具有大的数值孔径和横向尺寸,就使得采用多模LD阵列作为泵浦源成为可能。随着泵浦光在光纤中传输,纤芯中的掺杂介质吸收能量产生粒子数反转并产生受激跃迁,在光反馈的作用下产生激光振荡。
双包层光纤激光器以其高输出功率、低阈值、高效率、窄线宽和可调谐等显着优势,越来越受到人们的青睐。
双包层光纤是一种特殊结构的光纤,是双包层光纤激光器的核心。
双包层掺杂光纤由纤芯、内包层、外包层和保护层四个层次组成。内包层的作用:一是包绕纤芯,将激光辐射限制在纤芯内;二是将泵浦光耦合到内包层,使之在内包层和外包层之间来回反射,多次穿过单模纤芯被其吸收。在双包层结构中,泵浦光的吸收率和内包层的几何形状和纤芯在包层结构中的位置有关。此外,泵浦光被掺杂稀土离子的吸收率正比于内包层和外包层的面积比。
双包层光纤激光器采用包层泵浦技术,利用高功率二极管阵列对双包层光纤进行有效地泵浦。多模泵浦光在双包层光纤的内包层中传输,纤芯的掺杂稀土离子吸收多模泵浦光并辐射出单模激光,将高功率、低亮度的泵浦光转换成衍射极限的,单模强激光输出。双包层光纤的独特结构使得泵浦光不必耦合到单模纤芯内,而是耦合到内包层中,极大地提高了耦合效率和光纤泵浦功率。再加上光纤所具有的高表面积/体积比,从而有效地消除了限制高功率激光器的激光介质热效应问题。
双包层光纤激光激光器以其小巧灵活、全固化、低阈值以及有着衍射极限的光束质量等显着优点越来越受到人们的喜爱。双包层光纤与传统的单模光纤的区别在于,通过设计光纤结构和选择合适的材料-----内包层。以大功率多模激光器为泵浦源,通过包层泵浦技术将多模泵浦光耦合进入内包层。当泵浦源的光沿光纤内包层的纵向传播时将多次穿越纤芯,并逐渐被稀土离子所吸收,从而产生激光效应。
双包层光纤激光器最容易实现的结构为线性腔、端泵浦的形式,即在双包层光纤的两端加上激光双镜,经过耦合系统的泵浦光从双包层光纤的一端进入光纤,产生的信号光在两个腔镜和双包层光纤组成的谐振腔中进行激光振荡,得到模式优质的激光输出。
泵浦源LD所产生的泵浦光经过透镜耦合系统准直、聚焦后入射到双包层光纤的前端,经过光纤前端的二镜进入有着大数值孔径和大横向尺寸的内包层,并沿着光纤传输,在传输过程中激发掺杂纤芯中的稀土离子产生受激跃迁,并形成粒子数反转,在达到形成激光振荡所需要的条件后,从光纤的另一端输出激光。非球面透镜耦合系统的作用是将多模半导体激光器输出的光束变换成为适合在双包层光纤中传输的光束。前腔镜用于将后向的激光反射回到光纤中去,后腔镜的作用是把剩余泵浦激光反射回到光纤包层中去继续参与泵浦,并反射部分信号激光回到光纤纤芯参与激光振荡,进行谐振放大。
由于采用双包层光纤的特殊结构,双包层光纤激光器除了具有结构简单、体积小、散热性好、输出激光光束质量好等一些光纤激光器的优点外,还有着一些独特的优点:
1 双包层光纤作为波导介质,纤芯直径非常小,在纤芯内限制了极少数的激光模式,很容易形成高功率密度,且内包层结构能保证大功率半导体泵浦,因而可以提高泵浦效率,实现高增益。双包层光纤的特殊结构降低了激光器的工作阈值,提高了泵浦光转换效率。纤芯的几何尺寸限制了在光纤内传输的光的模式,选择适合的增益光纤就可以使激光实现单模运转,同时保证输出光束的质量。
2 由于双包层光纤具有很高的表面积/体积比,散热效果好,环境温度允许在-2070摄氏度,无需庞大的水冷系统,高功率运转时也需要风冷。冷却系统的简化降低了激光器的成本,极大地提高了激光器的稳定性和工作寿命,平均无故障时间在10000h甚至100000h以上。又由于双包层光纤具有良好的柔性,双包层光纤激光器可以设计得相当小巧、结构紧凑、易于集成,可以在高冲击、强振动、高温度、有灰尘等相对恶劣的环境中工作,特别适用于对功率要求较高的特殊环境。
3 双包层光纤激光器具有良好的光谱特性。通过改变双包层光纤纤芯内的掺杂物质或
者掺杂物质的组分(如镱/钕共掺),可以实现不同波长的激光输出。同时对于某单一掺杂物质,输出的光谱特性也受到基质材料的影响。
4 双包层光纤激光器本质上是一种光纤器件,因此,它能以较高的耦合效率与目前的光纤通信系统中的光纤器件(如光纤耦合器、光纤反射镜、光纤光栅、光纤放大器、波分复用器等)连接。将光纤激光器用在现有的通信系统上,可以支持更高的传输速率,也是未来高码率密集波分复用系统以及未来相干通信的基础。

本文发布于:2024-09-23 03:26:13,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/196600.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:光纤   激光器   激光   包层   双包
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议