五分钟让你看懂finfet及未来7nm制程

五分钟让你看懂 FinFET
反垃圾邮箱
打开这一年来半导体最热门的新闻,大概就属FinFET了,例如:iPhone 6s内新一代A9应用处理器采用新电晶体架构很可能为鳍式电晶体(FinFET),代表FinFET开始全面攻占手机处理器、三星与台积电较劲,将10 纳米 FinFET 正式纳入开发蓝图、联电携 ARM,完成 14 纳米 FinFET 制程测试。到底什么是FinFET它的作用是什么为什么让这么多国际大厂趋之若骛呢
什么是 FET
FET的全名是“场效电晶体(Field Effect Transistor,FET)”,先从大家较耳熟能详的“MOS”来说明。MOS 的全名是“金属-氧化物-半导体场效电晶体(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)”,构造如图一所示,左边灰的区域(矽)叫做“源极(Source)”,右边灰的区域(矽)叫做“汲极(Drain)”,中间有块金属(绿)突出来叫做“闸极(Gate)”,闸极下方有一层厚度很薄的氧化物(黄),因为中间由上而下依序为金属(Metal)、氧化物(Oxide)、半导体(Semiconductor),因此称为“MOS”。
MOSFET的工作原理与用途
MOSFET的工作原理很简单,电子由左边的源极流入,经过闸极下方的电子通道,由右边的汲极流出,中间的闸极则可以决定是否让电子由下方通过,有点像是水龙头的开关一样,因此称为“闸”;电子是由源极流入,也就是电子的来源,因此称为“源”;电子是由汲极流出,看看说文解字里的介绍:汲者,引水于井也,也就是由这里取出电子,因此称为“汲”。
当闸极不加电压,电子无法导通,代表这个位是 0,如图一(a)所示;当闸极加正电压,电子可以导通,代表这个位是 1,如图一(b)所示。
MOSFET是目前半导体产业最常使用的一种场效电晶体(FET),科学家将它制作在矽晶圆上,是数码讯号的最小单位,一个 MOSFET 代表一个 0 或一个 1,就是电脑里的一个“位(bit)”。电脑是以 0 与 1 两种数码讯号来运算;我们可以想像在矽芯片上有数十亿个 MOSFET,就代表数十亿个 0 与1,再用金属导线将这数十亿个 MOSFET 的源极、汲极、闸极链接起来,电子讯号在这数十亿个 0 与 1 之间流通就可以交互运算,最后得到使用者想要的加、减、乘、除运算结果,这就是电脑的基本工作原理。晶圆厂像台积电、联电,就是在矽晶圆上制作数十亿个 MOSFET 的工厂。
闸极长度:半导体制程进步的关键
封盾
在 MOSFET 中,“闸极长度(Gate length)”大约 10 纳米,是所有构造中最细小也最难制作的,因此我们常常以闸极长度来代表半导体制程的进步程度,这就是所谓的“制程线宽”。闸极长度会随制程技术的进步而变小,从早期的  微米、 微米,进步到90 纳米、65 纳米、45 纳米、22 纳米,到目前最新制程 10 纳米。当闸极长度愈小,则整个 MOSFET
就愈小,而同样含有数十亿个 MOSFET 的芯片就愈小,封装以后的集成电路就愈小,最后做出来的手机就愈小啰!。10 纳米到底有多小呢细菌大约 1 微米,病毒大约 100 纳米,换句话说,人类现在的制程技术可以制作出只有病毒 1/10(10 纳米)的结构,厉害吧!
注:制程线宽其实就是闸极长度,只是图一看起来 10 纳米的闸极长度反而比较短,因此有人惯把它叫做“线宽”。
视频无线传输FinFET将半导体制程带入新境界料罐
MOSFET的结构自发明以来,到现在已使用超过 40 年,当闸极长度缩小到 20 纳米以下的时候,遇到了许多问题,其中最麻烦的是当闸极长度愈小,源极和汲极的距离就愈近,闸极下方的氧化物也愈薄,电子有可能偷偷溜过去产生“漏电(Leakage)”;另外一个更麻烦的问题,原本电子是否能由源极流到汲极是由闸极电压来控制的,但是闸极长度愈小,则闸极与通道之间的接触面积(图一红虚线区域)愈小,也就是闸极对通道的影响力愈小,要如何才能保持闸极对通道的影响力(接触面积)呢
因此美国加州大学伯克莱分校胡正明、Tsu-Jae King-Liu、Jeffrey Bokor 等三位教授发明了“鳍式场效电晶体(Fin Field Effect Transistor,FinFET)”,把原本 2D 构造的 MOSFET 改为 3D的 FinFET,如图二所示,因为构造很像鱼鳍,因此称为“鳍式(Fin)”。
由图中可以看出原本的源极和汲极拉高变成立体板状结构,让源极和汲极之间的通道变成板状,则闸极与通道之间的接触面积变大了(图二黄的氧化物与下方接触的区域明显比图一红虚线区域还大),这样一来即使闸极长度缩小到 20 纳米以下,仍然保留很大的接触面积,可以控制电子是否能由源极流到汲极,因此可以更妥善的控制电流,同时降低漏电和动态功率耗损,所谓动态功率耗损就是这个 FinFET 由状态 0 变 1 或由 1 变 0 时所消耗的电能,降低漏电和动态功率耗损就是可以更省电的意思啰!
掌握 FinFET 技术,就是掌握市场竞争力
直流调压器简而言之,鳍式场效电晶体是闸极长度缩小到 20 纳米以下的关键,拥有这个技术的制程与专利,才能确保未来在半导体市场上的竞争力,这也是让许多国际大厂趋之若骛的主因。值得一提的是,这个技术的发明人胡正明教授,就是梁孟松的博士论文指导教授,换句话说,梁孟松是这个技术的核心人物之一,台积电没有重用梁孟松继续研发这个技术,致使他跳糟到三星电子,让三星电子的 FinFET 制程技术在短短数年间突飞猛进甚至超越台积电,这才是未来台湾半导体晶圆代工产业最大的危机,虽然台积电控告梁孟松侵权与违反竞业禁止条款获得胜诉,但是内行人都知道这是赢了面子输了里子,科技公司的人事安排、升迁、管理如何才能留住人才,值得国内相关的科技厂商做为借镜。
北京时间3月28日上午消息,美国麻省理工学院(MIT)和芝加哥大学的研究人员开发了一种新技术,可以让芯片按照预定的设计和结构自行组装。
这项技术有望进一步推进有着50年历史的“摩尔定律”,从而继续压缩计算设备的成本。该研究项目的重点是在芯片上自行组装线路,而这恰恰是芯片制造行业最大的挑战之一。自动埋钉机
有了这种技术,就不必像现有的方式那样在硅片上蚀刻细微特征,而是可以利用名为嵌段共聚物(block copolymer)的材料进行扩张,并自行组装成预定的设计和结构。MIT化学工程系教授卡伦·格里森(Karen Gleason)表示,这种自组装技术需要向现有的芯片生产技术中增加一个步骤。
现在的生产技术要利用长波光在硅晶圆上烧制出电路形态。目前的芯片需要采用10纳米工艺,但很难使用同样的波长填满更小的晶体管。EUV光刻技术有望降低波长,在芯片上蚀刻出更细微的特征。这种技术有望实现7纳米工艺,但即便已经投资了数十亿美元研发资金,这种技术依然很难部署。
MIT认为,他们的新技术很容易融入现有生产技术,无需增加太多复杂性。该技术可以应
用于7纳米生产工艺,有关这项技术的论文已于本周发表在《Nature Nanotechnology》期刊上。

本文发布于:2024-09-24 20:21:41,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/178753.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:技术   闸极   半导体   电子   制程   芯片   长度
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议