一种新型双光子吸收材料的合成、光学性质及生物成像

一种新型双光子吸收材料的合成、光学性质及生物成像
李宁宁;宁鹏;冯燕;孟祥明
【摘 要】A novel naphthalimide derivative, N-(morpholinoethyl)-4-(4-ethynyl-phenol)-1, 8-naphthalimide (A) was synthesized by Sonogashira couple reaction by using 4-bromo-1, 8-naphthalicanhydride as the raw material. Its molecular structure was characterized by 1H NMR, 13C NMR and HR-MS (ESI). By analyzing the fluorescence emission spectra of compound A in six different polar organic solvents and methanol/tetrahydrofuran mixed solvents, along with the two-photon induced fluorescence spectra of A in tetrahydrofuran, the results showed that it has a significant response to the polarity with a solvatochromic effect. With the increase in solvent's polarity, the fluorescence emission peak of A is red-shifted and the fluorescence intensity is decreased. The two-photon absorption action cross section of A at 820 nm is 90 GM. In addition, A could be successfully localized to lysosomes, and the co-localization coefficient with lysosome commercial dye Lyso Tracker Red is as high as 0.902 6. Therefore, compound A as a novel two-photon absorption materi
al could be used as a two-photon lysosomal tracking agent for cell imaging.%以4-溴-1, 8-萘二甲酸酐为起始原料通过Sonogashira偶联反应合成了一种新型萘酰亚胺衍生物 (N-吗啉乙基)-4-(4-羟基苯乙炔基)-1, 8-萘酰亚胺 (A), 其结构通过1H NMR、13C NMR、HR-MS (ESI) 表征, 并对化合物A在6种不同极性有机溶剂和甲醇/四氢呋喃混合溶剂中的荧光发射光谱, 以及A在四氢呋喃中的双光子诱导荧光光谱进行了分析.结果表明:A具有溶质变效应, 随溶剂极性的增大, A的荧光发射峰发生红移, 且荧光强度下降.并且A在波长820 nm处的有效双光子吸收截面为90 GM.此外, A可成功定位于溶酶体, 与溶酶体商品化染料Lyso Tracker Red的共定位系数高达0.902 6.因此, 化合物A作为一个新型的双光子吸收材料, 可作为双光子溶酶体示踪剂用于细胞成像.
【期刊名称】《安徽大学学报(自然科学版)》
【年(卷),期】2019(043)002祛痘除皱美白面膜素
【总页数】7页(P82-88)
【关键词】萘酰亚胺;溶致变;极性;双光子吸收;生物成像
【作 者】李宁宁;宁鹏;冯燕;孟祥明
【作者单位】安徽大学 化学化工学院, 安徽 合肥 230601;安徽大学 化学化工学院, 安徽 合肥 230601;安徽大学 化学化工学院, 安徽 合肥 230601;安徽大学 化学化工学院, 安徽 合肥 230601
【正文语种】乌氏粘度计原理中 文
【中图分类】O625.31.3
1,8-萘酰亚胺及其衍生物作为一种性能良好的有机材料, 被广泛应用于聚合物工业着剂、荧光增白剂、激光染料、二极管、液晶添加剂、荧光细胞标记物以及潜在抗癌药物方面的研究[1-4]. 由于其具有荧光量子产率高、光学性稳定、对溶液pH不敏感[5-8]、良好的双光子吸收性能[9]等优点, 而被广泛用于双光子吸收材料的设计[10]. 尤为重要的是, 1, 8-萘酰亚胺及其衍生物在结构上易于修饰, 在其分子中的4号位碳上可以引入不同的功能性基团, 从而得到具有不同功能的材料. 因此对1,8-萘酰亚胺及其衍生物的设计合成及性质研究成了一大热点[11].
笔者以萘酰亚胺为生团, 通过在萘酰亚胺的酰亚胺氮原子上引入具有亚细胞器溶酶体定位功能的烷基吗啉基团[12], 4号位上接入4-羟基苯乙炔, 其中4-羟基苯乙炔作为给体(D), 酰亚氨基作为受体(A)和生团, 构建了一个典型的D-π-A结构的ICT[13-15]体系, 设计出了化合物A分子, 以期得到具有良好的光学性质和生物学应用潜能的新型双光子吸收材料. 化合物A的合成路线见图1所示.
图1 目标化合物A的合成路线
1 实验部分
1.1 仪器与试剂
Bruker Avance- 400核磁共振仪, 美国布鲁克公司; LTQ Orbitrap XL高分辨质谱仪, 赛默飞世尔科技(中国)有限公司; Tech-comp UV 1000紫外可见分光光度计, 上海天美科技有限公司; FL- 2500型荧光发射光谱仪, 日本岛津公司; Mira Optima 900F④钛宝石飞秒可调谐激光器(脉冲140 fs, 频率80 MHz), Coherent公司; LSM 710激光共聚焦显微镜, 德国卡尔·蔡司公司.
固体氧4-溴-1,8-萘二甲酸酐、N-(2-氨基乙基)吗啉、无水乙醇、N-甲基吡咯烷酮、三乙胺、碘化亚铜、三苯基膦二氯化钯、4-羟基苯乙炔, 分析纯, 上海麦克林试剂公司; 四氢呋喃、二氯乙烷、苯甲腈、正己醇、二甲亚砜、甲醇, 谱纯, 北京安耐吉试剂公司.
1.2 合 成
1.2.1 化合物1的合成
称取4-溴-1, 8-萘二甲酸酐2.5 g(9.01 mmol)于100 mL的圆底烧瓶中, 加入无水乙醇50 mL溶解,随后加入N-(2-氨基乙基)吗啉1.3 g(10.01 mmol), 在80 ℃下回流反应5 h, 待反应结束后, 冷却至室温, 旋干无水乙醇, 用二氯甲烷萃取, 制样, 用柱谱进行纯化, 洗脱液体系为石油醚与乙酸乙酯的体积比为2∶1, 最终得到白固体(化合物1)3.4 g (8.62 mmol), 产率为94%. 1H NMR (400 MHz,CDCl3): δ 8.63 (dd, J = 7.3, 1.1 Hz, 1H ), 8.55 (dd, J = 8.5, 1.1 Hz, 1H), 8.39 (d, J = 7.9 Hz, 1H), 8.03 (d, J = 7.9 Hz, 1H), 7.84 (dd, J = 8.5, 7.3 Hz, 1H), 4.33 (t, J = 6.9 Hz, 2H), 3.68 (t, J =5.2Hz, 4H), 2.71 ( t, J = 6.9 Hz, 2H), 2.60 (br s, 4H). 13C NMR (100 MHz, CDCl3): δ 163.59, 163.57, 133.28, 132.02, 131.21, 131.10, 130.61, 130.30, 129.00, 128.08, 123.02, 122.15, 67.02, 56.07, 53.81, 37.30.
1.2.2 化合物A的合成
在控制无水无氧的条件下, 往150 mL的斯莱克瓶中加入1.94 g的化合物1 (5.00 mmol)、4-羟基苯乙炔0.71 g (6.00 mmol)、三苯基膦二氯化钯0.05 g (0.07 mmol)、碘化亚铜0.25 g (1.3 mmol)、三乙胺1.83 g (18.1 mmol) 和N-甲基吡咯烷酮30 mL, 随后升温至80 ℃, 磁力搅拌反应15 h. 待反应结束后,抽滤,用二氯甲烷萃取, 旋干制样用柱谱分离(v(石油醚)∶v(乙酸乙酯)=2∶1), 得到黄固体(化合物A)1.2 g, 产率为 55%. 1H NMR (600 MHz, DMSO-d6) δ 10.17 (s, 1H), 8.74 (d, J = 8.3 Hz, 1H), 8.54 (d, J = 7.1 Hz, 1H), 8.43 (d, J = 7.6 Hz, 1H), 7.99 (d, J =7.6 Hz, 1H), 7.97 (t, J =7.8 Hz, 1H) ,7.62 (d, J = 8.5 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 4.18 (br s, 2H), 3.54(br s, 4H), 2.57 (br s, 2H), 2.50 (m, 4H). 13C NMR (150 MHz, DMSO-d6) δ 163.65, 163.35, 159.51, 134.27, 132.49, 131.69, 131.10, 130.71, 130.60, 128.53, 127.79, 127.50, 122.87, 121.56, 116.43, 111.92, 100.61, 85.15, 66.51, 55.87, 53.73, 37.18. ESI-MS m/z: Calc-d for C26H22N2O4 { [M + H]+ } 427.158 0, found, 427.165 0.
2 结果与讨论
无动力除尘2.1 化合物A在不同极性溶剂中的光学性能研究
笔者首先选取了6种不同大小的极性溶剂(四氢呋喃、二氯乙烷、苯甲腈、正己醇、二甲亚砜、甲醇), 分析A分子在不同溶剂中的光谱数据, 测试浓度均为10 μM ,结果如表1、图2所示.
表1 化合物A在不同溶剂中的光谱数据溶剂λabs/nmλem/nmΔλ/nmφτ/ns四氢呋喃399492930.312.02二氯乙烷3994991000.271.71苯甲腈4015101090.211.60正己醇4005161160.161.40二甲亚砜4005291290.090.57甲醇4005471470.060.30
注:λabs 为紫外最大吸收波长;λem为荧光最大发射波长;Δλ为斯托克斯位移;φ为荧光量子产率(以硫酸奎宁为参比);τ为荧光寿命.
多分力传感器图2 化合物A(10 μM) 在不同溶剂中的紫外吸收光谱(a)及荧光发射光谱(b)
由图2(a)可知,化合物A在不同极性溶剂中的紫外吸收峰位置维持在400 nm左右, 基本不变. 图2(b)显示, 在最弱极性溶剂四氢呋喃中, A的最大荧光发射峰在500 nm , 而在溶剂极性最强的甲醇中A的荧光最大发射峰在540 nm , 随着溶剂极性的增大, A相对应的荧光最大发
射峰发生红移, 从极性最弱的四氢呋喃到最强的甲醇红移了40 nm . 另外A分子的荧光强度也受到溶剂极性的影响, 在最弱极性溶剂四氢呋喃中荧光强度最强, 而在最强极性溶剂甲醇中荧光强度则最低. 其中A在四氢呋喃中的荧光发射强度是其在甲醇中的7倍, 从而说明了A具有溶致变效应[16]. 同时在不同溶剂中A的量子产率和荧光寿命均表现出与荧光强度相一致的变化趋势, 其中在四氢呋喃中, A的量子产率为0.31, 荧光寿命为2.02 ns, 而在甲醇中A的量子产率降低到了0.06 , 荧光寿命减小到0.3 ns. 出现以上现象主要是因为A分子中吸电子的酰亚胺基团与供电子的4-羟基苯乙炔共轭连接形成了强的推拉电子结构, 分子在激发态时容易产生分子内电荷转移形成ICT态. 在这种机制下A分子在极性溶剂中的能量会剧烈降低, 导致荧光发射波长向长波方向移动, 产生红移[17], 同时会伴随着荧光量子产率和荧光寿命的降低. 以上结果表明,A分子具有溶致变效应.
电视棒原理

本文发布于:2024-09-22 08:23:29,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/156984.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:荧光   溶剂   极性   光子   化合物
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议