指针装置、电子时钟、指针装置的控制方法和存储介质与流程


本发明涉及指针装置、电子时钟、指针装置的控制方法和存储介质。



背景技术:


例如,在日本进行了专利申请的公开号2005-172677号公报中,公开了在检测到冲击的定时对步进电动机进行制动控制的模拟电子时钟。

专利文献:日本特开2005-172677号公报



技术实现要素:


本发明是一种指针装置,具备:

指针;

步进电动机,其具备线圈,驱动上述指针;

驱动电路,其驱动上述步进电动机;

检测部,其检测由于冲击而在上述线圈中产生的电动势;以及

处理器,其控制上述驱动电路的驱动,其中,

上述处理器根据通过上述检测部检测出的电动势,判定上述指针偏移的可能性高的方向,判定上述指针是否由于上述冲击而向上述方向偏移,在判定为上述指针偏移的情况下,与上述方向对应地修正上述指针的位置。

附图说明

图1是表示第一实施方式的电子时钟的概要结构图。

图2是微计算机的概要框图。

图3是单芯结构的步进电动机的平面图。

图4是驱动电路的电路图。

图5a是检测转子的正转的说明图。

图5b是检测转子的正转的说明图。

图6a是检测转子的倒转的说明图。

图6b是检测转子的倒转的说明图。

图7是表示图5a、图5b和图6a、图6b的开关元件tr1~4、开关元件tr7、tr8的动作的时序图。

图8是表示检测步进电动机的下落的定时的时序图。

图9是表示向线圈输入修正脉冲的状态的时序图。

图10是表示旋转检测的检测信号与检测结果的关系的说明图。

图11是表示在时刻t2以后的冲击检测区间中,cpu通过a/d变换器检测到步进电动机的冲击时的时序的说明图。

图12是表示冲击前的极性与检测时的端子的关系的说明图。

图13是表示cpu执行驱动电路的极性检测时的时序的说明图。

图14是表示极性检测时的极性与检测结果的关系的说明图。

图15是表示根据图14的检测结果对于冲击前的极性和当前的极性中是否有极性的偏移的说明图。

图16是表示步进电动机的转子在正转方向上产生了正转偏移,因此修正极性的处理的时序图。

图17是表示在第一实施方式中cpu进行的修正处理的流程图。

图18是表示正转偏移修正处理的流程图。

图19是表示倒转偏移修正处理的流程图。

图20是表示无下落修正处理的流程图。

图21是表示在图11中检测出基于电动势的最初的峰值的电流后,在与该电动势的峰值相反方向上产生了电动势的峰值的情况的时序图。

图22是表示通过a/d变换器检测出的电动势的最初的峰值是正方向、并且在该峰值之后检测出一次与上一个峰值相反方向的峰值的情况的实验数据。

图23是表示通过a/d变换器检测出的电动势的最初的峰值是正方向、并且在该峰值之后检测出二次与上一个峰值相反方向的峰值的情况的实验数据。

图24是表示通过a/d变换器检测出的电动势的最初的峰值是负方向、并且在该峰值之后检测出一次与上一个峰值相反方向的峰值的情况的实验数据。

图25是表示通过a/d变换器检测出的电动势的最初的峰值是负方向、并且在该峰值之后检测出二次与上一个峰值相反方向的峰值的情况的实验数据。

图26是表示通过a/d变换器检测出的电动势的最初的峰值是负方向、并且在该峰值之后检测出三次与上一个峰值相反方向的峰值的情况的实验数据。

图27是针对图22~图26的实验数据,表示冲击前的极性与检测时的端子的关系的说明图。

图28是适用于第三实施方式的步进电动机的平面图。

图29是适用于第三实施方式的驱动电路的电路图。

图30是适用于第三实施方式的步进电动机的平面图。

图31是适用于第三实施方式的驱动电路的电路图。

图32a是第三实施方式的检测转子的正转的说明图。

图32b是第三实施方式的检测转子的正转的说明图。

图33a是第三实施方式的检测转子的倒转的说明图。

图33b是第三实施方式的检测转子的倒转的说明图。

图34是表示图32a、图32b和图33a、图33b的开关元件tr1~tr8的动作的时序图。

图35是表示向驱动电路输入驱动脉冲的状态的时序图。

图36是表示第三实施方式的旋转检测的检测信号与检测结果的关系的说明图。

图37是表示判定部的a/d变换器检测到步进电动机的冲击时的时序的说明图。

图38是表示第三实施方式的冲击前的极性与检测时的端子的关系的说明图。

图39是表示第三实施方式的cpu执行驱动电路的极性检测时的时序的说明图。

图40是表示第三实施方式的极性检测时的极性与检测结果的关系的说明图。

图41是表示根据图40的检测结果对于冲击前的极性和当前的极性中是否有极性的偏移的说明图。

图42是第三实施方式的步进电动机的转子在正转方向上产生了正转偏移,因此修正极性的处理的时序图。

图43是表示在第三实施方式中cpu61进行的修正处理的流程图。

具体实施方式

<第一实施方式>

图1是表示第一实施方式的电子时钟1的概要结构图。本实施方式的模拟式的电子时钟1能够通过独立的电动机分别驱动4个指针2a~2d(显示部),虽然没有具体限制,但例如是具备用于佩戴在手腕上的表带的腕表型的电子时钟。

该电子时钟1例如具备各指针2a~2d、经由轮系机构3a、3d(显示部)分别对各指针2a~2d进行旋转驱动的步进电动机4a~4d(电动机)。进而,电子时钟1具备驱动步进电动机4a~4d的驱动电路5、微计算机6、电源部7和振子8。

以下,在不具体区别指针2a~2d时,简单地记载为指针2,在不具体区别各轮系机构3a~3d时,简单地记载为轮系机构3。同样,在不具体区别步进电动机4a~4d时,简单地记载为步进电动机4。

此外,也有时将包括步进电动机4、驱动电路5、微计算机6、振子8的部分称为“电动机驱动装置”。另外,微计算机6、驱动电路5具有进行步进电动机4的旋转控制的功能,因此也有时将包括驱动电路5和微计算机6的部分称为“旋转控制装置”。

驱动电路5具备驱动步进电动机4的桥电路,与来自微计算机6的指令对应地,向步进电动机4施加电压。微计算机6是大规模集成电路(lsi:large-scaleintegration),构成为包括cpu(中央处理单元)61(控制部)、外围设备68、振荡电路611、分频电路612和计时电路613(计时部)。

将各指针2a~2d设置得相对于文字盘上的旋转轴自由旋转。轮系机构3a~3d分别使指针2a~2d进行旋转动作。驱动电路5根据从微计算机6输入的控制信号,按照适当的定时输出用于驱动步进电动机4a~4d的驱动电压信号。该驱动电路5能够根据来自的微计算机6的设定信号,调整步进电动机4的驱动电压、驱动电压脉冲宽度并输出。驱动电路5能够向步进电动机4输出正转方向或倒转方向的驱动信号。

cpu61进行各种运算处理,统一控制电子时钟1的整体动作。cpu61读出并执行控制程序,持续地使各部进行与时刻显示相关的动作。另外,cpu61根据向操作部(未图示)的输入操作,使得实时或按照所设定的定时进行所要求的动作。cpu61是设定指针2移动的目标位置并控制驱动电路5的驱动的控制单元。

另外,cpu61根据通过后述的a/d变换器702(检测部)检测出的电动势,修正指针2的位置。特别地,cpu61通过检测电动势来检测冲击,根据检测到冲击时通过a/d变换器702检测出的电动势的模式,修正指针2的位置。

振荡电路611生成固有的频率信号并输出到分频电路612。作为振荡电路611,例如使用与水晶等的振子8组合地振荡的电路。分频电路612将从振荡电路611输入的信号分频为cpu61、计时电路613利用的各种频率的信号并输出。计时电路613是以下的计数器电路,其对从分频电路612输入的预定的频率信号的次数进行计数,与初始时刻相加,由此计数当前时刻。由cpu61读出通过计时电路613计数的当前时刻,用于时刻显示。也可以通过软件方式控制该时刻的计数。电源部7构成为能够使电子时钟1长期持续并且稳定地动作,例如是电池和dc-dc变换器的组合。由此,正在工作的电源部7的输出电压保持稳定的值。

图2是作为lsi的微计算机6的概要框图。微计算机6具备cpu61、rom(只读存储器)63、ram(随机存取存储器)64、osc(振荡器)65、外围设备68、vrmx67和dvr66。在rom63中保存有各种控制程序、初始设定数据,在电子时钟1启动时,通过cpu61读出未图示的各种控制程序并持续地执行。

ram64是sram(静态随机存取存储器)、dram(动态随机存取存储器)这样的易失性存储器,向cpu61提供工作用的存储空间。另外,在ram64中,能够临时存储基于向操作部的输入操作而设定的用户设定数据等。ram64的一部分也可以是闪速存储器或eeprom(电可擦除可编程只读存储器)等非易失性存储器。osc65生成固有的频率信号,供给到cpu61和外围设备68等,相当于图1的振荡电路611和振子8的组合。

dvr66是对驱动电动机的信号进行驱动的电路。vrmx67是生成供给到该dvr66的电源的调节器。外围设备68包括电动机控制部69、判定部70。电动机控制部69具备脉冲生成电路691、vrmx控制电路694。

另外,判定部70具备a/d变换器702、检测判定电路704。此外,这些脉冲生成电路691、vrmx控制电路694、a/d变换器702、检测判定电路704既可以是单一的微计算机内的电动机控制部,也可以分别独立地设置电动机控制部,通过单一的微计算机或多个微计算机进行各动作。

脉冲生成电路691输出(施加)用于驱动步进电动机4的驱动脉冲等各种脉冲。vrmx控制电路694控制vrmx67来生成电源电压。a/d变换器702将驱动电路5的模拟电压(将在后面详细说明)变换为数字信号。检测判定电路704根据该数字信号,判定步进电动机4是否旋转了。

图3是单芯结构的步进电动机4的平面图。步进电动机4具备定子47和转子48。转子48形成为圆盘状,被支持为在圆周方向上自由转动,并且具备在直径方向上磁化为2极的磁铁。在转子48中,空白部分构成s极48s,施加了阴影的部分构成n极48n。对转子48例如适当地使用稀土类磁铁等(例如钐钴磁铁等)磁铁,但并不限于此。

转子48被配置成能够以设置在定子47上的未图示的轴为中心旋转。此外,在本实施方式中,通过向后述的线圈l1施加驱动脉冲,转子48能够以预定的步进角向逆时针方向和顺时针方向的任意一个方向旋转。在将步进电动机4应用于时钟等的情况下,在转子48上例如连结构成用于使时钟的指针2转针的轮系机构3的齿轮。另外,通过转子48旋转,能够使该齿轮等旋转。

定子47具备形成为大致矩形框状的铁芯46、设置在其上边部分的线圈l1。在铁芯46的下边中央部形成大致圆形的孔部42,将转子48配置成相对于该孔部42成为同心。如果电流流过线圈l1,则在定子47的区域44、45附近出现磁极。区域44、45的磁极的极性由流过线圈l1的电流的方向决定。该线圈l1经由端子座43与驱动电路5(参照图1)连接。

因此,如果驱动线圈l1使得在区域44、45中出现与n极48n、s极48s排斥的磁极,则转子48旋转。另外,在定子47上,在容纳转子48的孔部42的内周面形成有2个凹部42a。在将附图的上方向作为0度时,这2个凹部42a形成在约60度和约240度的方向上。通过这2个凹部42a能够维持转子48的静止状态。

在本实施方式中,步进电动机4在n极48n、s极48s与区域44、45相对的状态下,指数转矩(保持转矩)最大。因此,在电流不流过线圈l1的非通电状态下,转子48磁稳定地停止在图3所示的停止位置或相对于该停止位置旋转了180度的停止位置。因此,在本实施方式中,将这些停止位置称为“稳定位置”。另外,在铁芯46中,在转子48的右上部分和左下部分形成有大致圆弧状的凹部41。该凹部41的形成位置是铁芯46的截面积最小(或截面积出现极小值)的位置,为容易引起磁饱和的位置。在该图3中,转子48以左上为n极、以右下为s极而停止。

图4是驱动电路5的电路图。驱动电路5向步进电动机4的线圈l1施加脉冲生成电路691生成的脉冲。驱动电路5具备由开关元件tr1~tr4构成的h桥电路,开关元件tr1~tr4例如是mosfet(金属氧化物半导体场效应晶体管)。另外,开关元件tr7、tr8以及电阻r1构成对积蓄在线圈l1中的能量进行放电的放电电路。在本实施方式中,将线圈l1的端子电压称为线圈电压v1,将流过线圈l1的电流称为线圈电流i1。

在驱动电路5的电源端子和接地端子之间,通过电源部7(参照图1)施加电源电压vcc。另外,在电压端子和接地端子之间,经由连接点o1串联连接开关元件tr1、tr2,经由连接点o2串联连接开关元件tr3、tr4。电阻r1的一端与接地端子连接,在连接点o1和电阻r1的另一端之间连接开关元件tr7,在连接点o2和电阻r1的另一端之间连接开关元件tr8。进而,电阻r1的另一端与a/d变换器702的输入端子连接。另外,在连接点o1、o2之间连接线圈l1。

如果向驱动电路5的电源端子施加电源电压vcc,关断开关元件tr2、tr3,接通开关元件tr1、tr4,则向连接点o1施加电源电压vcc,电流沿着路径a1流动。在该情况下,在线圈l1中,在箭头的方向上产生磁通mf1(参照图3)。在该情况下,转子48相对于纸面进行右旋转(参照图3)。

另外,将该右旋转定义为正转,将左旋转定义为倒转。另外,将图3中的转子48的位置作为极性0。此外,磁通的方向、极性是一个例子,并不限于此。

<冲击检测>

接着,参照图5a~图7说明本实施方式的冲击检测。此外,在本实施方式中,如果对步进电动机4产生冲击,则转子48旋转。通过该转子48的旋转,在线圈l1中产生磁通。如果产生磁通,则在线圈l1中产生电动势,因此对该电动势进行放大,由判定部70的a/d变换器702(参照图2)检测出冲击。在该情况下,cpu61如以下这样控制驱动电路5。

图5a、图5b是检测正转的情况。在图5a中,cpu61接通开关元件tr2、tr4、tr7,关断开关元件tr1、tr3、tr8。图5a的上侧的步进电动机4表示转子48的位置和旋转方向、在线圈l1中产生的磁通mf2的方向。转子48的n极是大致右方向。如果转子48正转,则在线圈l1中产生向右的磁通mf2,在从连接点o2向连接点o1的方向上产生电动势,电流沿着路径a2流动。路径a2是从接地通过开关元件tr4、线圈l1、开关元件tr2返回到接地的路径。

接着,如图5b所示,cpu61使开关元件tr2变为关断。这样,在线圈l1中产生的电动势作为电流沿着路径a3流动。路径a3是从开关元件tr4经由线圈l1通过开关元件tr7、电阻r1的路径。这时,电阻r1的两端电压与流过线圈l1的电流成正比。图5b的上侧的步进电动机4表示转子48的n极是右下方向。

图6a、图6b是检测倒转的情况。在图6a中,cpu61接通开关元件tr2、tr4、tr8,关断开关tr1、tr3、tr7。图6a的上侧的步进电动机4表示转子48的位置和旋转方向、在线圈l1中产生的磁通mf1的方向。转子48的n极是大致左方向。如果转子48倒转,则在线圈l1中产生向右的磁通mf1,在从连接点o1向连接点o2的方向上产生电动势,电流沿着路径a4流动。路径a4是从接地通过开关元件tr2、线圈l1、开关元件tr4返回到接地的路径。

接着,如图6b所示,cpu61使开关元件tr4变为关断。这样,在线圈l1中产生的电动势作为电流沿着路径a5流动。路径a5是从接地通过开关元件tr2、线圈l1、开关元件tr8、电阻r1的路径。这时,电阻r1的两端电压与流过线圈l1的电流成正比。图6b的上侧的步进电动机4表示转子48的n极是右下方向。

在本实施方式中,cpu61重复进行图5a~图6b的动作。如果对步进电动机4产生冲击,则判定部70的a/d变换器702在图5b或图6b的定时,在电阻r1的两端电压中检测出脉冲。由此,能够检测出在线圈l1中产生的电动势。

图7是表示图5a、图5b和图6a、图6b的开关元件tr1~tr4、开关元件tr7、tr8的动作的时序图。

如图7所示,开关元件tr1、tr3始终为关断。

在时刻t60之前,开关元件tr2、tr4、tr7接通,开关元件tr8关断。这与图5a所示的开关的状态对应。

在时刻t60,开关元件tr2变为关断。这与图5b所示的开关的状态对应。

在时刻t61,开关元件tr2、tr8变为接通,开关元件tr7变为关断。即,开关元件tr2、tr4、tr8接通,开关元件tr7关断。这与图6a所示的开关的状态对应。

在时刻t62,开关元件tr4变为关断。这与图6b所示的开关的状态对应。

在时刻t63,开关元件tr4、tr7变为接通,开关元件tr8变为关断。

此后,时刻t64~t67是与时刻t60~t63同样的开关的状态,重复这样的状态。

在冲击检测中,cpu61如图7所示,重复图5a、图5b、图6a、图6b的状态,检测通过冲击产生的电流。

<下落检测的定时>

cpu61根据脉冲使能en,开始冲击检测。图8是表示检测步进电动机4的下落的定时的时序图。

如图8所示,cpu61根据时刻t0的脉冲使能en,开始冲击检测。在此,脉冲生成电路691在时刻t31~时刻t32的期间向线圈l1施加驱动脉冲p1。该驱动脉冲p1对转子48进行旋转驱动。

时刻t21是从时刻t0到时刻t31的期间,是在脉冲生成电路691向连接点o1施加驱动脉冲p1之前。

在时刻t21,在cpu61检测出冲击ip1f的情况下,cpu61取消驱动脉冲p1的输出,保持自身判定的转子48的极性。另一方面,在施加驱动脉冲p1后的时刻t22,在cpu61检测出冲击ip1b的情况下,cpu61使自身判定转子48的极性变化。

例如,在转子48的极性为0时,成为脉冲使能en,在施加驱动脉冲p1之前检测出冲击ip1f的情况下,cpu61取消驱动脉冲p1的施加。然后,cpu61将转子48的极性维持为0,置位下落标志(也称为冲击检测标志)。另一方面,在施加驱动脉冲p1之后检测出冲击ip1b的情况下,cpu61将转子48的极性变更为1,置位下落标志。

此外,在cpu61取消了驱动脉冲p1的施加的情况下,与实际应该在的极性不同,因此即使极性没有由于下落(冲击)而偏移,指针位置也为偏移了1秒的状态。

<第一实施方式的整体动作>

接着,使用图9~图20的附图说明本实施方式的整体动作。图9是表示向线圈l1输入修正脉冲p3的状态的时序图。

如图9所示,cpu61在时刻t1,将驱动脉冲和冲击检测设为使能,开始时钟内部极性是0并且实际极性也是0的区间pw。此外,时钟内部极性是表示在cpu61的内部处理中使用的转子48的极性的数据,实际极性是指由转子48的位置确定的实际的极性。另外,为了方便,针对实际极性的状态也表示为0或1。在时刻t2,cpu61开始冲击检测动作。

时刻t2~t3的冲击检测区间pi表示能够检测冲击的期间。时刻t3表示步进电动机4的动作开始的定时,为电动机驱动区间pm的开始时刻。脉冲生成电路691和驱动电路5在时刻t31~时刻t32的期间,向连接点o1施加驱动脉冲p1,在其后的时刻t33,向连接点o1施加检测脉冲p2。

检测脉冲p2是用于检测转子48的极性的脉冲。检测脉冲p2的脉冲宽度与驱动脉冲p1相比充分短。因此,即使输出检测脉冲p2,转子48也不旋转。在输出了检测脉冲p2后,cpu61按照图7所示的模式控制驱动电路5,通过a/d变换器702检测流过电阻r1的电流。然后,cpu61判别流过电阻r1的电流比某阈值大(高)还是小(低),由此检测转子48的极性。

在图9中,检测信号ds1是从连接点o2流向接地的电流脉冲,其检测结果是高。在该情况下,cpu61判定为基于驱动脉冲p1的转子48的旋转失败了,在时刻t35~时刻t36的期间,通过脉冲生成电路691向连接点o1施加修正脉冲p3。

图10是表示旋转检测的检测信号与检测结果的关系的说明图。如图10所示,表示作为同相检测而从连接点o1向连接点o2施加了检测脉冲p2的情况。另外,表示作为反相检测而从连接点o2向连接点o1施加了检测脉冲p2的情况下的检测结果。此外,同相检测是指以与最后输出的驱动脉冲p1相同的方向输出检测脉冲p2,由此检测转子48的极性。另外,反相检测是指以与最后输出的驱动脉冲p1相反的方向输出检测脉冲p2,由此检测转子48的极性。例如,在向连接点o1施加了驱动脉冲p1后,在同相检测的情况下,如果检测出从连接点o2流向接地的低的电流脉冲,则意味着转子48进行了旋转(旋转正常(ok))。另一方面,如果检测出从连接点o2流向接地的高的电流脉冲,则意味着转子48没有旋转(旋转异常(ng))。

另外,在向连接点o1施加了驱动脉冲p1后,在反相检测的情况下,如果检测出从连接点o1流向接地的高的电流脉冲,则意味着转子48进行了旋转(旋转正常),另一方面,如果检测出从连接点o1流向接地的低的电流脉冲,则意味着转子48没有旋转(旋转异常)。

在通过检测脉冲p2判定为旋转正常的情况下,cpu61更新时钟内部极性。只要是从施加检测脉冲p2到接着使转子48旋转为止的期间,则可以将更新时钟内部极性的定时设定为任意的时刻。此外,在本实施例中,设为在紧接着施加检测脉冲p2而判定为旋转正常后,更新时钟内部极性。

此外,在图9中,表示在从连接点o1向连接点o2施加检测脉冲p2的情况下,从连接点o2输出高,因此转子48没有旋转(旋转异常)。因此,向连接点o1施加了修正脉冲p3。修正脉冲p3是用于使转子48旋转的脉冲。对于修正脉冲p3,也可以在能够使转子48旋转的范围内,变更修正脉冲p3的脉冲宽度。另外,修正脉冲p3是在转子48没有通过驱动脉冲p1旋转的情况下施加的脉冲,因此可以将修正脉冲p3的脉冲宽度设定得比驱动脉冲p1的脉冲宽度长。

在脉冲生成电路691施加修正脉冲p3后,cpu61更新时钟内部极性。只要是从施加修正脉冲p3到接着使转子48旋转为止的期间,则可以将更新时钟内部极性的定时设定为任意的时刻。此外,在本实施例中,设为在紧接着施加修正脉冲p3后,cpu61更新时钟内部极性。

接着,使用图11的时序图说明冲击检测时。图11是表示在时刻t2以后的冲击检测区间pi中cpu61通过a/d变换器702检测到步进电动机4的冲击时的时序图。

在该图11中,时钟内部极性是1,实际极性是1。cpu61按照图7所示的模式控制驱动电路5,通过a/d变换器702检测流过电阻r1的电流,检测从连接点o1、o2的任意一个流向接地的电流脉冲。在此,在时刻t21,cpu61通过从连接点o2流向接地的电流脉冲,检测冲击。

图11的左上所示的驱动电路5表示由于在线圈l1中产生的电动势而流过电流。右上所示的驱动电路5表示作为电流脉冲(电流ip1)而检测出在线圈l1中产生的电动势。

另外,cpu61如果通过电流脉冲(电流ip1)检测到冲击,则停止软件处理(动作)。在该情况下,cpu61从时刻t21开始停止软件处理(动作)。由此,在时刻t21之后,到再次开始软件处理为止,时钟内部极性与转子48的方向无关地被固定。

在此,cpu61能够根据通过a/d变换器702检测出的电动势的峰值,修正指针2的位置。此外,在第一实施方式中,说明cpu61根据通过a/d变换器702检测出的电动势的最初的峰值而修正指针2的位置的情况。

图12是表示冲击前的极性与检测时的端子的关系的说明图。如图12所示,在冲击前的极性是0,检测出从连接点o1流向接地的电流ip1的情况下,判定为有正转偏移的可能性。另一方面,在冲击前的极性是0,检测出从连接点o2流向接地的电流ip1的情况下,判定为有倒转偏移的可能性。另外,在冲击前的极性是1,检测出从连接点o1流向接地的电流ip1的情况下,判定为有倒转偏移的可能性。另一方面,在冲击前的极性是1,检测出从连接点o2流向接地的电流ip1的情况下,判定为有正转偏移的可能性。即,cpu61能够根据电动势的最初的峰值,判定指针2偏移的可能性高的方向。

接着,使用图13的时序图说明极性检测。图13是图11的延续,是表示cpu61执行驱动电路5的极性检测时的时序的说明图。左上所示的驱动电路5表示脉冲生成电路691施加了检测脉冲p4时的状态。右上所示的驱动电路5表示检测出检测信号ds2时的状态。此外,在此假设实际极性由于冲击而变化为0。

在冲击后,在时刻t4,cpu61再开始软件处理,开始软件处理再开始期间pr。在软件处理再开始期间pr中的时刻t5,脉冲生成电路691向驱动电路5的连接点o2施加检测脉冲p4。然后,在连接点o1产生检测信号ds2,而该检测信号ds2的电平是低。由此,cpu61将时钟内部极性从1变更为0。此外,能够任意地设定时刻t4的定时。另外,也可以与冲击前的时钟内部极性对应地,向驱动电路5的连接点o1施加检测脉冲p4。在该情况下,与冲击前的时钟内部极性、向驱动电路5的连接点o1、o2的哪个施加检测脉冲p4对应地,检测信号p2的电平与是否变更时钟内部极性的相关性变化。

图14是表示极性检测时的极性与检测结果的关系的说明图。在冲击前的极性是0,作为同相检测,从连接点o1向连接点o2施加检测脉冲后,检测出从连接点o2流向接地的高的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性一致。另一方面,在检测出从连接点o2流向接地的低的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性不一致。

在冲击前的极性是0,作为反相检测,从连接点o2向连接点o1施加检测脉冲后,检测出从连接点o1流向接地的低的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性一致。另一方面,在检测出从连接点o1流向接地的高的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性不一致。

另外,在冲击前的极性是1,作为同相检测,从连接点o2向连接点o1施加检测脉冲后,检测出从连接点o1流向接地的高的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性一致。另一方面,在检测出从连接点o1流向接地的低的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性不一致。

在冲击前的极性是1,作为反相检测,从连接点o1向连接点o2施加检测脉冲后,检测出从连接点o2流向接地的低的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性一致。另一方面,在检测出从连接点o2流向接地的高的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性不一致。

图15是表示根据图14的检测结果对于冲击前的极性和当前的极性是否有极性的偏移的说明图。即,在图14中与实际极性一致的情况下,是与冲击前相同的极性,因此相当于极性没有偏移的情况,另一方面,在与实际极性不一致的情况下,是与冲击前不同的极性,因此相当于极性有偏移的情况。

在图13的情况下,冲击前的极性(内部极性)是“1”,输入同相检测的检测脉冲p4,检测出从连接点o1流向接地的低的电流脉冲。cpu61判定为极性与图14不一致,另外,判定为极性相对于图15有偏移。

图16是表示步进电动机4的转子48在正转方向上产生了正转偏移,因此修正极性的处理的时序图。

该图16的定时全部在软件处理再开始期间pr中。在时刻t40,脉冲生成电路691向连接点o1施加脉冲p51。图16的左上的步进电动机4表示时刻t40的转子48的修正后的位置。在时刻t41,脉冲生成电路691向连接点o2施加脉冲p52。然后,在时刻t42~t43,脉冲生成电路691向连接点o1施加反转脉冲p53,修正转子48的位置。图16的右上的步进电动机4表示时刻t44的转子48的修正后的位置。

此外,该修正定时可以是任意的,也可以与下次的转针定时一致等。另外,在指针2由于冲击而移动到指针2预定在下次转针定时所处的位置的情况下,也可以省略该修正。

<第一实施方式的cpu的处理>

接着,使用流程图说明cpu61进行的修正处理。图17是表示在第一实施方式中cpu61进行的修正处理的流程图。

cpu61判定冲击检测标志(是上述的下落标志)是否置位(步骤s01)。在步骤s01的判定中,冲击检测标志没有置位的情况下(否),cpu61结束图17的处理。

在步骤s01的判定中,冲击检测标志置位的情况下(是),cpu61判定时钟的内部极性是否是0(步骤s03)。

在步骤s03的判定中,时钟的内部极性是0的情况下(是),cpu61判定是否检测出从连接点o1、o2的任意一个流向接地的电流脉冲(步骤s05)。

在步骤s05的判定中,检测出从连接点o1流向接地的电流脉冲的情况下,cpu61判定为转子48有正转偏移的可能性(步骤s07)。

另一方面,在步骤s05的判定中,检测出从连接点o2流向接地的电流脉冲的情况下,cpu61判定为转子48有倒转偏移的可能性(步骤s09)。

另外,在步骤s03的判定中,时钟的内部极性不是0的情况下(否),cpu61判定是否检测出从连接点o1、o2的任意一个流向接地的电流脉冲(步骤s11)。

在步骤s11的判定中,检测出从连接点o1流向接地的电流脉冲的情况下,cpu61判定为转子48有倒转偏移的可能性(步骤s09)。

另一方面,在步骤s11的判定中,检测出从连接点o2流向接地的电流脉冲的情况下,cpu61判定为转子48有正转偏移的可能性(步骤s07)。

然后,cpu61执行极性检测动作(步骤s13)。在该情况下,cpu61通过脉冲生成电路691施加极性检测脉冲,检测当前的转子48的极性。

cpu61判定转子48的极性的检测结果是否与当前的极性一致(步骤s15)。在步骤s15的判定中,转子48的极性不一致的情况下(否),cpu61判定为极性由于下落而偏移了(步骤s17)。在该情况下,cpu61执行后述的图18所示的正转偏移修正处理(步骤s19),结束图17的处理。

另一方面,在步骤s15的判定中,转子48的极性一致的情况下(是),cpu61判定为没有因下落造成的偏移(步骤s21),前进到步骤s23。

另外,在步骤s09中判定为转子48有倒转偏移的可能性后,cpu61执行极性检测动作(步骤s25)。在该情况下,cpu61通过脉冲生成电路691施加检测脉冲,检测当前的转子48的极性。

cpu61判定转子48的极性的检测结果是否与当前的极性一致(步骤s27)。在步骤s27的判定中转子48的极性不一致的情况下(否),cpu61判定为极性由于下落而偏移了(步骤s29)。在该情况下,cpu61执行后述的图19所示的倒转偏移修正处理(步骤s31),结束图17的处理。

另一方面,在步骤s27的判定中转子48的极性一致的情况下(是),cpu61判定为没有因下落造成的偏移(步骤s21)。在该情况下,cpu61执行后述的图20所示的无下落修正处理(步骤s23),结束图17的处理。

<正转偏移修正处理>

接着,使用流程图说明cpu61进行的正转偏移修正处理。

图18是表示cpu61进行的正转偏移修正处理的流程图。

cpu61判定时钟内部极性是否与上次检测出的极性(将其称为上次极性)一致(步骤s101)。在此,上次极性是指最后施加使转子48旋转的脉冲前的极性。在步骤s101的判定中极性一致的情况下(是),cpu61修正时钟内部极性(步骤s103),结束图18的正转偏移修正处理。

在此,对于上次极性与时钟内部极性的关系,由于上次极性为时钟内部极性的一秒前的极性,因此基本上每一秒成为相互不同的极性。因此,在正转偏移修正处理中,时钟内部极性与上次极性一致的情况下(步骤s101的是),意味着转子48在正转侧进行了一步旋转(提前),因此cpu61按照驱动脉冲的一个脉冲的量,将时钟内部极性修正为相反的极性。具体地说,cpu61如果时钟内部极性是“1”,则将该时钟内部极性修正为“0”,如果时钟内部极性是“0”,则将该时钟内部极性修正为“1”(步骤s103)。

另一方面,在步骤s101的判定中极性不一致的情况下(否),cpu61修正时钟内部极性(步骤s105)。在正转偏移修正处理中,时钟内部极性与上次极性不一致的情况下(步骤s101的否),意味着转子48在正转侧进行了2步旋转(提前)(步骤s105),因此cpu61使转子48在倒转侧旋转1步来进行修正(步骤s107),结束图18的正转偏移修正处理。

<倒转偏移修正处理>

接着,使用流程图说明cpu61进行的倒转偏移修正处理。

图19是表示cpu61进行的倒转偏移修正处理的流程图。

cpu61判定时钟内部极性是否与上次极性一致(步骤s131)。在步骤s131的判定中极性一致的情况下(是),cpu61修正时钟内部极性(步骤s133)。

在倒转偏移修正处理中时钟内部极性与上次极性一致的情况下(步骤s131的是),意味着转子48在倒转侧进行了一步旋转,因此cpu61按照驱动脉冲的一个脉冲的量,将时钟内部极性修正为相反的极性。具体地说,cpu61如果时钟内部极性是“1”,则将该时钟内部极性修正为“0”,如果时钟内部极性是“0”,则将该时钟内部极性修正为“1”(步骤s133)。

然后,cpu61使转子48在正转侧旋转2步来进行修正(步骤s135),结束图19的倒转偏移修正处理。

另一方面,在步骤s131的判定中极性不一致的情况下(否),cpu61修正时钟内部极性(步骤s137)。在倒转偏移修正处理中时钟内部极性与上次极性不一致的情况下(步骤s131的否),意味着转子48没有旋转(没有提前)(步骤s137),因此cpu61使转子48在正转侧旋转1步(即提前)来进行修正(步骤s139),结束图19的倒转偏移修正处理。

<无下落修正处理>

接着,使用流程图说明cpu61进行的无下落修正处理。

图20是表示cpu61进行的无下落修正处理的流程图。

cpu61判定时钟内部极性与上次极性是否一致(步骤s151)。在步骤s151的判定中极性一致的情况下(是),为了补偿在上次极性时驱动脉冲所取消的一个脉冲的量,cpu61使转子48在正转侧旋转一步(即提前)来进行修正(步骤s153),结束图20的无下落修正处理。

另一方面,在步骤s151的判定中极性不一致的情况下(否),即使在上次极性时取消了一个脉冲量的驱动脉冲,在冲击中也运动了一秒(即一个脉冲的量),因此cpu61不需要进行修正,结束图20的无下落修正处理。

例如,即使如在日本进行了专利申请的公开号2005-172677号公报所记载的模拟电子时钟那样,在检测到冲击的定时对步进电动机进行制动控制,也有时会引起指针的滑动偏移。

但是,如以上说明的那样,根据第一实施方式的电子时钟1,能够根据通过a/d变换器702检测出的电动势检测冲击,根据检测到冲击时通过a/d变换器702检测出的电动势的模式,修正指针2的位置。

由此,第一实施方式的电子时钟1能够修正因冲击造成的电子时钟的指针偏移,提高产品的可靠性。

另外,cpu61通过使指针2的位置移动1步,能够修正该指针位置。

<第二实施方式>

在第一实施方式中,在图11中电流ip1是基于最初的电动势的峰值的电流脉冲,但也可以根据多次的电动势的峰值,修正指针2的位置。

在该情况下,cpu61例如在通过a/d变换器702检测出的电动势的最初的峰值后,判定是否在与该电动势的峰值相反的方向上产生电动势的峰值,由此能够修正指针2的位置。

图21是表示在图11中检测出基于电动势的最初的峰值的电流ip1后,在与该电动势的峰值相反的方向上产生了电动势的峰值的情况的时序图。

图21是图11的延续。在图11的时刻t21,cpu61通过a/d变换器702检测从连接点o2经由电阻r1流向接地的电流ip1。然后,cpu61重复进行图7所示的一连串的开关元件的控制模式。

cpu61判定是否检测出从连接点o2的相反侧即连接点o1流过电阻r1的电流脉冲。在时刻t22,如图21的左侧的电路图所示,cpu61使开关元件tr4、tr7变为接通,使开关元件tr2、tr8变为关断。图21的左上的步进电动机4表示时刻t22的转子48的位置和旋转方向、线圈l1的磁通的方向。这时,通过a/d变换器702检测从连接点o1经由电阻r1流向接地的电流ip2。

在时刻t23,如图21的右侧的电路图所示,cpu61使开关元件tr2、tr8变为接通,使开关元件tr4、tr7变为关断。图21的右上的步进电动机4表示时刻t23的转子48的位置、线圈l1的磁通的方向。这时,通过a/d变换器702检测从连接点o2经由电阻r1流向接地的电流ip3。

此外,例如可以将从检测出电流ip1到检测出电流ip2的间隔调整为1(ms)~6(ms)。另外,在将图5a、图6a的期间设为570(μs),将图5b、图6b的期间设为30(μs)的情况下,到最初的第二次为止,能够无视电动势的峰值。另外,对于是否在相反方向上产生电动势的峰值的次数,例如可以进行最大10次的检测动作。另外,如果没有检测出最初的电动势的峰值,则可以判定为没有指针偏移。

例如,在通过a/d变换器702检测出的电动势的最初的峰值是正向,并且在该峰值后奇数次检测出与上一个峰值相反的方向的峰值的情况下,cpu61修正指针2的位置。另外,在通过a/d变换器702检测出的电动势的最初的峰值是正向,偶数次检测出与上一个峰值相反的方向的峰值的情况下,cpu61不修正指针2的位置。

由此,cpu61不通过检测脉冲判定转子48的极性,就能够调整指针2的位置。

图22是表示通过a/d变换器702检测出的电动势的最初的峰值是正方向、并且在该峰值之后检测出一次(奇数次)与上一个峰值相反的方向的峰值的情况的图表。图表的纵轴表示从连接点o1流向接地的电流值。图表的横轴表示时间经过。

如图22所示,在时刻ti1,在正方向上检测出电动势的最初的峰值ri1。另外,在时刻ti2,在负方向上检测出电动势的峰值ri2。这样,在正方向上检测出最初的峰值ri1后,在负方向上检测出峰值ri2,然后,如果没有在正方向上检测出峰值,则指针2的位置没有偏移,因此cpu61不修正指针2。

在此,例如,正方向是指从连接点o1向接地流过电流,负方向是指从接地向连接点o1流过电流。另外,对于与连接点o1成对的连接点o2,替换正和负。具体地说,正方向是指从接地向连接点o2流过电流,负方向是指从连接点o2向接地流过电流。由此,峰值的检测能够规定在连接点o1检测正的电流、或在连接点o2检测负的电流。

图23是表示通过a/d变换器702检测出的电动势的最初的峰值是正方向,并且在该峰值之后检测出二次(偶数次)与上一个峰值相反的方向的峰值的情况的图表。图表的纵轴表示从连接点o1流向接地的电流值。图表的横轴表示时间经过。

如图23所示,在时刻ti4,在正方向上检测出电动势的最初的峰值ri3。另外,在时刻ti5,在负方向上检测出电动势的峰值ri4。进而,在时刻ti6,在正方向上检测出电动势的峰值ri5。

这样,在正方向上检测出最初的峰值ri3后,在负方向上检测出峰值ri4,然后,进而在正方向上检测出峰值ri5的情况下,指针2的位置偏移。由此,cpu61修正指针2的位置。此外,在该情况下,是通过a/d变换器702检测出的电动势的最初的峰值是正方向的情况,因此cpu61使指针2向倒转方向移动来修正位置。

图24是表示通过a/d变换器702检测出的电动势的最初的峰值是负方向,并且在该峰值之后检测出一次(奇数次)与上一个峰值相反的方向的峰值的情况的图表。图表的纵轴表示从连接点o1流向接地的电流值。图表的横轴表示时间经过。

如图24所示,在时刻ti7,在负方向上检测出电动势的最初的峰值ri6。另外,在时刻ti8,在正方向上检测出电动势的峰值ri7。这样,在负方向上检测出最初的峰值ri6后,在正方向上检测出峰值ri7,然后,如果没有在负方向上检测出峰值,则修正指针2的位置。此外,在该情况下,是通过a/d变换器702检测出的电动势的最初的峰值是负方向的情况,因此cpu61使指针2向正转方向移动来修正位置。

图25是表示通过a/d变换器702检测出的电动势的最初的峰值是负方向,并且在该峰值之后检测出二次(偶数次)与上一个峰值相反的方向的峰值的情况的图表。图表的纵轴表示从连接点o1流向接地的电流值。图表的横轴表示时间经过。

如图25所示,在时刻ti9,在负方向上检测出电动势的最初的峰值ri8。另外,在时刻ti10,在正方向上检测出电动势的峰值ri9。进而,在时刻ti11,在负方向上检测出电动势的峰值ri10。

这样,在负方向上检测出最初的峰值ri8后,在正方向上检测出峰值ri9,进而在负方向上检测出峰值ri10的情况下(在相反方向上偶数次),cpu61不修正指针2的位置。

图26是表示通过a/d变换器702检测出的电动势的最初的峰值是负方向,并且在该峰值之后检测出三次(奇数次)与上一个峰值相反的方向的峰值的情况的图表。图表的纵轴表示从连接点o1流向接地的电流值。图表的横轴表示时间经过。

如图26所示,在时刻ti12,在负方向上检测出电动势的最初的峰值ri11。另外,在时刻ti13,在正方向上检测出电动势的峰值ri12。另外,在时刻ti14,在负方向上检测出电动势的峰值ri13。进而,在时刻ti15,在正方向上检测出电动势的峰值ri14。

这样,在负方向上检测出最初的峰值ri11后,在该峰值后检测出3次(奇数次)与上一个峰值相反的方向的峰值的情况下,修正指针2的位置。此外,在该情况下,是通过a/d变换器702检测出的电动势的最初的峰值是负方向的情况,因此cpu61使指针2向正转方向移动来修正位置。

图27是针对图22~图26的实验数据表示冲击前的极性与检测时的端子的关系的说明图。

如图27的第一行所示,考虑以下的情况,即冲击前的极性是0,判定为在正转方向上偏移了,并且初次检测在连接点o1,第二检测在连接点o2,第三检测在连接点o1。在该情况下,在倒转方向上将指针2的位置修正一步即可。

另外,如图27的第二行所示,考虑以下的情况,即冲击前的极性是0,判定为在倒转方向上偏移了,并且初次检测在连接点o2,第二检测在连接点o1,第三检测在连接点o2,第四检测在连接点o1。在该情况下,在正转方向上将指针2的位置修正一步即可。

另外,如图27的第三行所示,考虑以下的情况,即冲击前的极性是1,判定为在倒转方向上偏移了,并且初次检测在连接点o1,第二检测在连接点o2,第三检测在连接点o1,第四检测在连接点o2。在该情况下,不修正指针2的位置。

另外,如图27的第四行所示,考虑以下的情况,即冲击前的极性是1,判定为在正转方向上偏移了,并且初次检测在连接点o2,第二检测在连接点o1,第三检测在连接点o2。在该情况下,不修正指针2的位置。

如以上说明的那样,对于第二实施方式的电子时钟1,cpu61能够根据通过a/d变换器702检测出的电动势的峰值,修正指针2的位置。特别地,cpu61能够根据通过a/d变换器702检测出的电动势的最初的峰值,修正指针2的位置。

<第三实施方式>

接着,说明第三实施方式的电子时钟。此外,在以下的说明中,对与第一实施方式对应的部分附加相同的附图标记,适当地省略说明。本实施方式的电子时钟的整体结构与第一实施方式相同,但以下的点不同:代替第一实施方式的步进电动机4和驱动电路5,适用图28所示的步进电动机140和图29所示的驱动电路150。

图28是适用于本实施方式的步进电动机140的平面图。步进电动机140是双芯类型的电动机,具备定子147和转子48。转子48的结构与第一实施方式相同。在本实施方式中,转子48通过向后述的线圈l1(第一线圈)和线圈l2(第二线圈)施加驱动脉冲,能够以预定的步进角向逆时针方向和顺时针方向的任意一个方向旋转。此外,在本实施方式中,步进角是180度。

此外,线圈l1(第一线圈)进行电动势的峰值的检测。另外,线圈l2(第二线圈)进行驱动脉冲的输入、极性的判定。进而,cpu61使线圈l1(第一线圈)和线圈l2(第二线圈)交替地成为高阻抗状态。

定子147具备大致矩形状的中心磁轭145、配置在其下方的一对旁轭144、146、线圈l1、l2。将旁轭144、146设置得大致左右对称,使得围住转子48。另外,在中心磁轭145的上端部和旁轭144、146之间,插入线圈l1(第一线圈)和线圈l2(第二线圈)。另外,线圈l1、l2经由一对端子座143与后述的驱动电路150连接。

在定子147中,在中心磁轭145的下端与一对旁轭144、146的交点处形成大致圆形的孔部142,将转子48配置在该孔部142。在定子147中,在励磁状态下,沿着转子48的外周,在中心磁轭145的近旁、旁轭144的近旁和旁轭146的近旁出现3个磁极。通过向线圈l1、l2施加驱动脉冲,定子147的3个磁极切换其极性。另外,在旁轭144、146的连接位置,在孔部142的下方形成有圆弧状的凹部20。

对于线圈l1,其一端与中心磁轭145磁耦合,线圈l1的另一端侧与旁轭146的自由端磁耦合。另外,对于线圈l2,其一端与中心磁轭145磁耦合,线圈l2的另一端侧与旁轭144的自由端磁耦合。

在本实施方式中,通过脉冲生成电路691(参照图2)向线圈l1、l2施加驱动脉冲。由此,如果从线圈l1、l2产生磁通,则该磁通沿着线圈l1、l2的磁芯和与之磁耦合的定子147流动,适当地切换3个磁极。

另外,在孔部142的内周面形成有3个凹部21、22、23。这些凹部21、22、23形成在相对于中心磁轭145的方向向逆时针方向倾斜10度左右的方向、与之垂直的2个方向上。通过这些凹部21、22、23能够维持转子48的静止状态。在本实施方式中,步进电动机140在转子48的极化方向与相对于中心磁轭145的方向向顺时针倾斜约80度和约260度的方向相对的状态下,指数转矩(保持转矩)最大。

因此,图28所示的停止位置、或从该停止位置旋转180度的停止位置为本实施方式的稳定位置。另外,在图28中,通过虚线箭头表示在线圈l1、l2的非通电状态下在定子147的各部产生的磁通mf33。另外,凹部20、23的附近是旁轭144、146的截面积最小(或截面积出现极小值)的位置,为容易引起磁饱和的位置。

在本实施方式中,有时由于各种因素,转子48停止在稳定位置以外的位置、即不稳定位置。本实施方式的转矩特性与第一实施方式相同。因此,在本实施方式中,在将图28所示的停止位置作为0度时,转子48停止的可能性高的不稳定位置为90度或270度的位置。

图29是适用于本实施方式的驱动电路150的电路图。驱动电路150向2个线圈l1、l2施加通过脉冲生成电路生成的脉冲,例如具备由开关元件tr1~tr6构成的h桥电路,开关元件tr1~tr6由mosfet构成。另外,开关元件tr7~tr9和电阻r1构成对积蓄在线圈l1、l2中的能量进行放电的放电电路。

在驱动电路150的电源端子和接地端子之间,通过电源部7(参照图1)施加电源电压vcc。另外,在电压端子和接地端子之间,经由连接点o2串联连接开关元件tr1、tr2,经由连接点o1串联连接开关元件tr3、tr4,经由连接点o3串联连接开关元件tr5、tr6。电阻r1的一端与接地端子连接,在连接点o2和电阻r1的另一端之间连接开关元件tr7,在连接点o1和电阻r1的另一端之间连接开关元件tr8,在连接点o3和电阻r1的另一端之间连接开关元件tr9。另外,在连接点o1、o2之间连接步进电动机140的线圈l1,在连接点o1、o3之间连接线圈l2。

如果向驱动电路150的电源端子施加电源电压vcc,使开关元件tr4、tr5变为接通,关断开关tr1~tr3、tr6,则向连接点o3和连接点o1之间施加电源电压vcc,电流沿着路径b1流动。在该情况下,在线圈l1中,在箭头的方向上产生磁通mf3(参照图28)。在该情况下,转子48相对于纸面进行右旋转。在本实施方式中,将该右旋转定义为正转,将图28中的转子48的位置作为极性0。此外,磁通的方向、极性是一个例子,并不限于此。

另外,在图30中表示适用于第三实施方式的步进电动机140的平面图,在图31中表示适用于第三实施方式的驱动电路150的电路图。

如图31所示,在向连接点o2施加电源电压vcc,使开关元件tr1、tr4变为接通,关断开关tr2~tr3、tr5~tr6,电流从连接点o2流向连接点o1的情况下,电流沿着路径b2流动。在该情况下,在线圈l2中,在箭头的方向上产生磁通mf4(参照图29)。在该情况下,转子48相对于纸面进行右旋转。

<冲击检测>

接着,参照图32a~图34说明本实施方式的冲击检测。此外,在本实施方式中,如果对步进电动机140产生冲击,则转子48旋转。通过该转子48的旋转,在线圈l1、l2中产生磁通。如果产生磁通,则在线圈l1、l2中产生电动势,因此对该电动势进行放大,判定部70的a/d变换器702(参照图2)检测出冲击。在此,发明人发现适合于使用线圈l1(第一线圈)进行电动势的峰值的检测,使用线圈l2(第二线圈)进行驱动脉冲的输入、极性的判定。在该情况下,cpu61如以下这样控制驱动电路150。

图32a、图32b是检测正转的情况。在图32a中,cpu61接通开关元件tr2、tr4、tr7,关断开关元件tr1、tr3、tr5~tr6、tr8。图32a的上侧的步进电动机140表示转子48的位置、在中心磁轭145和旁轭144、146中产生的磁极、在线圈l1中产生的磁通的方向。转子48的n极朝向右上方向。在中心磁轭145和旁轭144中产生s极,在旁轭146中产生n极。如果转子48正转,则在线圈l1中产生向上的磁通,从连接点o1向连接点o2产生电动势,电流沿着路径b3流动。路径b3是从接地通过开关元件tr4、线圈l1、开关元件tr2返回到接地的路径。另外,在该情况下,线圈l2为高阻抗状态。

接着,如图32b所示,cpu61使开关元件tr2变为关断。这样,流过线圈l1的电流沿着路径b4流动。路径b4是从开关元件tr4经由线圈l1通过开关元件tr7、电阻r1的路径。这时,电阻r1的两端电压与流过线圈l1的电流成正比。另外,线圈l2是高阻抗状态。图32b的上侧的步进电动机140表示转子48的位置。

图33a、图33b是检测倒转的情况。在图33a中,cpu61接通开关元件tr2、tr4、tr8,关断开关tr1、tr3、tr5~tr6、tr7。图33a的上侧的步进电动机140表示转子48的位置、在中心磁轭145和旁轭144、146中产生的磁极、线圈l1的磁通的方向。转子48的n极朝向左上方向。在中心磁轭145和旁轭144中产生n极性,在旁轭146中产生s磁极。如果转子48倒转,则在线圈l1中,在从连接点o2向连接点o1的方向上产生电动势,电流沿着路径b5流动。路径b5是从接地通过开关元件tr2、线圈l1、开关元件tr4返回到接地的路径。另外,在该情况下,线圈l2是高阻抗状态。

接着,如图33b所示,cpu61使开关元件tr4变为关断。这样,流过线圈l1的电流沿着路径b6流动。路径b6是从接地通过开关元件tr2、线圈l1、开关元件tr8、电阻r1的路径。这时,电阻r1的两端电压与流过线圈l1的电流成正比。另外,线圈l2是高阻抗状态。

在本实施方式中,cpu61重复进行图32a~图33b的动作。如果对步进电动机140产生冲击,则判定部70的a/d变换器702在图32b或图33b的定时,在电阻r1的两端电压中检测出脉冲。由此,能够检测出在线圈l1中产生的电动势。

图34是表示图32a、图32b和图33a、图33b的开关元件tr1~tr8的动作的时序图。

在时刻t70之前,开关元件tr2、tr4、tr7接通,开关元件tr8关断。这与图32a所示的开关的状态对应。

在时刻t70,开关元件tr2变为关断。这与图32b所示的开关的状态对应。

在时刻t71,开关元件tr2、tr8变为接通,开关元件tr7变为关断。即,开关元件tr2、tr4、tr8接通,开关元件tr7关断。这与图33a所示的开关的状态对应。

在时刻t72,开关元件tr4变为关断。这与图33b所示的开关的状态对应。

在时刻t73,开关元件tr4、tr7变为接通,开关元件tr8变为关断。

此后,时刻t74~t77是与时刻t70~t73同样的开关的状态,重复这样的状态。

在冲击检测中,cpu61如图34所示,重复图32a、图32b和图33a、图33b的状态,检测通过冲击产生的电流。

<第三实施方式的整体动作>

接着,使用图35~图42的附图,说明本实施方式的整体动作。图35是表示向驱动电路150输入驱动脉冲p11的状态的时序图。此外,对于与第一实施方式相同的处理,附加相同的附图标记,适当地省略说明。

如图35所示,cpu61在时刻t11,将驱动脉冲和冲击检测设为使能,开始时钟内部极性是0并且实际极性也是0的区间pw。图35的左上的步进电动机140表示时刻t11的转子48的初始位置。cpu61在时刻t12,开始冲击检测动作。

时刻t12~t13的冲击检测区间pi表示能够检测冲击的期间。cpu61在冲击检测区间pi中,将连接点o3设定为高阻抗状态z1。时刻t13表示步进电动机140的动作开始的定时,为电动机驱动区间pm的开始时间。

cpu61通过脉冲生成电路691,在时刻t131~时刻t132的期间向连接点o3施加驱动脉冲p11,然后,在时刻t133向连接点o3施加检测脉冲p12。这时,线圈l1的连接点o2为高阻抗状态z2。图35的上部中央的步进电动机140表示时刻t131的转子48的位置。其下侧的驱动电路150表示流过驱动脉冲p11的路径。

检测信号ds11是从连接点o1流向接地的电流脉冲,其检测结果是高。在该情况下,cpu61判定为基于驱动脉冲p1的转子48的旋转失败了,在时刻t135,向连接点o3施加修正脉冲p13,向连接点o1施加修正脉冲p14后,在时刻t136向连接点o2施加修正脉冲p15。

图36是表示旋转检测的检测信号与检测结果的关系的说明图。如图36所示,在作为极性为0时的同相检测而从连接点o3向连接点o1施加检测脉冲p12的情况下,如果检测出从连接点o1流向接地的低的电流脉冲,则意味着转子48进行了旋转(旋转正常)。另一方面,如果检测出从连接点o1流向接地的高的电流脉冲,则意味着转子48没有旋转(旋转异常)。

另外,在作为极性为0时的反相检测而从连接点o1向连接点o3施加检测脉冲p12的情况下,如果检测出从连接点o3流向接地的高的电流脉冲,则意味着转子48进行了旋转(旋转正常)。另一方面,如果检测出从连接点o3流向接地的低的电流脉冲,则意味着转子48没有旋转(旋转异常)。

另外,在作为极性为1时的同相检测而从连接点o3向连接点o1施加检测脉冲p12的情况下,如果检测出从连接点o1流向接地的低的电流脉冲,则意味着转子48进行了旋转(旋转正常)。另一方面,如果检测出从连接点o1流向接地的高的电流脉冲,则意味着转子48没有旋转(旋转异常)。

另外,在作为极性为1时的反相检测而从连接点o1向连接点o3施加检测脉冲p12的情况下,如果检测出从连接点o3流向接地的高的电流脉冲,则意味着转子48进行了旋转(旋转正常)。另一方面,如果检测出从连接点o3流向接地的低的电流脉冲,则意味着转子48没有旋转(旋转异常)。

返回到图35继续进行说明。在时刻t135,极性是0,从连接点o3向连接点o1施加检测脉冲p12。然后,检测出从连接点o1流向接地的高的电流脉冲。由此,表示转子48没有旋转。因此,cpu61通过脉冲生成电路691在时刻t135向连接点o3施加修正脉冲p13,向连接点o1施加修正脉冲p14后,在时刻t136向连接点o2施加修正脉冲p15。图35的右上的步进电动机140表示一连串的时序结束后的转子48的位置。

接着,使用图37的时序图说明冲击检测时。图37是表示判定部70的a/d变换器702检测到步进电动机140的冲击时的时序的说明图。

如图32a~图34所示,cpu61控制驱动电路150,检测步进电动机140的冲击。图37的左上的步进电动机140表示受到冲击时的转子48的位置。其下侧的驱动电路150表示在受到冲击时由于在线圈l1中产生的电动势而流过的电流的路径。图37的左上的步进电动机140表示检测到冲击后的时刻t121的转子48的位置。其下侧的驱动电路150表示从线圈l1经由电阻r1流向接地的电流ip1l的路径。

在图37中,表示在时刻t121检测出从连接点o1经由电阻r1流向接地的电流ip1l。此外,电流ip1l是基于电动势的最初的峰值的电流。

此外,在从连接点o1向接地流过电流ip1l时,时钟内部极性是1,实际极性为1。另外,在时刻t12~时刻t121的期间中,连接点o3为高阻抗状态。

另外,cpu61如果通过电流脉冲(电流ip1l)检测到冲击,则停止软件处理(动作)。在该情况下,cpu61从时刻t121停止软件处理(动作)。

图38是表示冲击前的极性与检测时的端子的关系的说明图。如图38所示,在冲击前的极性是0,检测出从连接点o1流向接地的电流脉冲(电流ip1l)的情况下,判定为有倒转偏移的可能性。另一方面,在冲击前的极性是0,检测出从连接点o2流向接地的电流脉冲(电流ip1l)的情况下,判定为有正转偏移的可能性。另外,在冲击前的极性是1,检测出从连接点o1流向接地的电流脉冲(电流ip1l)的情况下,判定为有正转偏移的可能性。另一方面,在冲击前的极性是1,检测出从连接点o2流向接地的电流脉冲(电流ip1l)的情况下,判定为有倒转偏移的可能性。

此外,在图37中,冲击前的极性是1,检测出从连接点o1流向接地的电流ip1l,因此判定为有正转偏移的可能性。此外,在第三实施方式中,相对于第一实施方式的冲击前的极性与检测时的端子的关系,为相反的关系。

接着,使用图39的时序图说明极性检测。图39是表示cpu61执行驱动电路150的极性检测时的时序的说明图。图39的左上的步进电动机140表示时刻t15之前的转子48的位置。其下的驱动电路150表示施加了检测脉冲p41时的状态。

图39的右上的步进电动机140表示时刻t15的转子48的位置。其下的驱动电路150表示检测出检测信号ds21时的状态。

在冲击后,在时刻t14,cpu61再开始软件处理,开始软件处理再开始期间pr。在软件处理再开始期间pr中的时刻t15,cpu61通过脉冲生成电路691向驱动电路150的连接点o1施加检测脉冲p41。然后,作为从连接点o3流向接地的低的电流脉冲,检测到检测信号ds21。

图40是表示第三实施方式的极性检测时的极性与检测结果的关系的说明图。在冲击前的极性是0,作为同相检测而从连接点o3向连接点o1施加检测脉冲后,检测出从连接点o1流向接地的高的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性一致。另一方面,在检测出从连接点o1流向接地的低的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性不一致。

在冲击前的极性是0,作为反相检测而从连接点o1向连接点o3施加检测脉冲后,检测出从连接点o3流向接地的低的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性一致。另一方面,在检测出从连接点o3流向接地的高的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性不一致。

在冲击前的极性是1,作为同相检测而从连接点o3向连接点o1施加检测脉冲后,检测出从连接点o1流向接地的高的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性一致。另一方面,在检测出从连接点o1流向接地的低的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性不一致。

在冲击前的极性是1,作为反相检测而从连接点o1向连接点o3施加检测脉冲后,检测出从连接点o3流向接地的低的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性一致。另一方面,在检测出从连接点o3流向接地的高的电流脉冲的情况下,cpu61判定为时钟内部极性与实际极性不一致。

图41是表示根据图40的检测结果对于冲击前的极性和当前的极性是否有极性的偏移的说明图。即,在图40中,在与实际极性一致的情况下,是与冲击前相同的极性,因此相当于极性没有偏移的情况,另一方面,在与实际极性不一致的情况下,是与冲击前不同的极性,因此相当于极性有偏移的情况。

返回到图39继续进行说明。在时刻t15,冲击前的极性(内部极性)是1,在从连接点o1施加同相检测的检测脉冲p41后,检测出作为从连接点o3流向接地的低的电流脉冲的检测信号ds2。cpu61如图40所示,判定为时钟内部极性与实际极性不一致,另外,如图41所示,判定为极性有偏移。

图42是步进电动机140的转子48在正转方向上产生了正转偏移,因此修正极性的处理的时序图。

该图42的定时全部在软件处理再开始期间pr中。在时刻t14,cpu61通过脉冲生成电路691向连接点o1施加脉冲p511,另外向连接点o2施加脉冲p521。另外,cpu61在时刻t141,通过脉冲生成电路691向连接点o3施加脉冲p531,修正转子48的位置。在图42的右上,表示在时刻t142步进电动机140的转子48的修正后的位置。此外,对于脉冲p511、p521、p531,将这3个脉冲一起称为用于修正的倒转脉冲。

<第三实施方式的cpu的处理>

接着,使用流程图说明cpu61进行的修正处理。图43是表示在第三实施方式中cpu61进行的修正处理的流程图。

图43的第三实施方式的流程图与图17的第一实施方式的流程图的不同点在于:对于连接点o1和连接点o2,检测出下落的检测端子(连接点)的判定方向相反。因此,对除此以外的相同的处理附加相同的附图标记,适当地省略说明。

cpu61判定冲击检测标志(是上述的下落标志)是否置位(步骤s01)。在步骤s01的判定中,冲击检测标志没有置位的情况下(否),cpu61结束图43的处理。

在步骤s01的判定中,冲击检测标志置位的情况下(是),cpu61判定时钟的内部极性是否是0(步骤s03)。

在步骤s03的判定中,时钟的内部极性是0的情况下(是),cpu61判定是否检测出从连接点o1、o2的任意一个流向接地的电流脉冲(步骤s1005)。

在步骤s1005的判定中,检测出从连接点o2流向接地的电流脉冲的情况下,cpu61判定为转子48有正转偏移的可能性(步骤s07)。

另一方面,在步骤s1005的判定中,检测出从连接点o1流向接地的电流脉冲的情况下,cpu61判定为转子48有倒转偏移的可能性(步骤s09)。

另外,在步骤s03的判定中,时钟的内部极性不是0的情况下(否),cpu61判定是否检测出从连接点o1、o2的任意一个流向接地的电流脉冲(步骤s1011)。

在步骤s1011的判定中,检测出从连接点o2流向接地的电流脉冲的情况下,cpu61判定为转子48有倒转偏移的可能性(步骤s09)。

另一方面,在步骤s05的判定中,检测出从连接点o1流向接地的电流脉冲的情况下,cpu61判定为转子48有正转偏移的可能性(步骤s07)。

此后,从步骤s07到步骤s31的处理与图17所示的从步骤s07到步骤s31的处理相同。

如以上说明的那样,第三实施方式的电子时钟1,即使步进电动机是双芯类型的电动机也能够适用。

根据第一实施方式~第三实施方式的电子时钟1,也不另外需要安装了用于执行指针位置检测动作的受光元件(例如光电晶体管)的追加基板,能够低成本地进行指针位置的修正。另外,也不需要通过追加基板和主基板的发光元件(例如led)和受光元件而隔着安装密度最高的针孔近旁的齿轮来安装,因此作为产品厚度,不会单纯增加部件和追加基板的厚度的量。因此,能够使产品变薄。

另外,也可以通过组合发光元件、受光元件来进而具备指针位置检测部。例如,也可以构成为在轮系机构3的一部分设置透过光的光透过部,进而设置发光元件和受光元件,构成为发光元件向轮系机构3发出光,受光元件检测透过了光透过部的光。

根据这样的结构,能够根据受光元件检测出光的定时确定光透过部的位置,因此能够确定轮系机构3的旋转位置。另外,通过检测轮系机构3的旋转位置,能够可靠地修正指针的位置。

由此,在电子时钟1中,例如在检测出冲击后,能够通过指针位置检测部修正指针位置。另外,根据该方法,即使在指针位置偏移了2步以上的情况下,也能够修正指针的位置。

(变形例子)

本发明并不限于上述实施方式,在不脱离本发明的主要内容的范围内能够进行变更实施,例如不限于电子时钟1,也可以适用于任意的指针位置。


技术特征:


1.一种指针装置,其特征在于,具备:

指针;

步进电动机,其具备线圈,驱动上述指针;

驱动电路,其驱动上述步进电动机;

检测部,其检测由于冲击而在上述线圈中产生的电动势;以及

处理器,其控制上述驱动电路的驱动,

上述处理器根据通过上述检测部检测出的电动势,判定上述指针偏移的可能性高的方向,

判定上述指针是否由于上述冲击而向上述方向偏移,并且

在判定为上述指针偏移的情况下,与上述方向对应地修正上述指针的位置。

2.根据权利要求1所述的指针装置,其特征在于,

上述处理器根据通过上述检测部检测出的电动势的最初的峰值,判定上述指针偏移的可能性高的方向,

与上述方向对应地修正上述指针的位置。

3.根据权利要求1所述的指针装置,其特征在于,

上述处理器判定在通过上述检测部检测出的电动势的最初的峰值后产生的与上一个峰值相对的相反方向的峰值的个数,根据该个数判定上述指针是否由于上述冲击向上述方向偏移。

4.根据权利要求1所述的指针装置,其特征在于,

在通过上述检测部检测出的电动势的最初的峰值是正方向的情况下,上述处理器使上述指针向倒转方向移动来修正该指针的位置,

在通过上述检测部检测出的电动势的最初的峰值是负方向的情况下,上述处理器使上述指针向正转方向移动来修正该指针的位置。

5.根据权利要求1所述的指针装置,其特征在于,

上述步进电动机具备具有磁铁的转子,

上述处理器根据上述磁铁的极性,判定上述指针是否由于上述冲击向上述方向偏移。

6.根据权利要求5所述的指针装置,其特征在于,

上述处理器向上述线圈输出脉冲,并根据流过该线圈的电流值,判定上述磁铁的极性。

7.根据权利要求6所述的指针装置,其特征在于,

上述步进电动机具备:

第一线圈,其进行电动势的峰值的检测;

第二线圈,其进行驱动脉冲的输入和极性的判定,

上述处理器将上述第一线圈和上述第二线圈交替地设为高阻抗状态。

8.一种电子时钟,其特征在于,具备:

权利要求1~7的任意一项所述的指针装置。

9.一种指针装置的控制方法,该指针装置具备:

指针;

步进电动机,其具备线圈,驱动上述指针;

驱动电路,其驱动上述步进电动机;

检测部,其检测在上述线圈中产生的电动势;以及

处理器,其控制上述驱动电路的驱动,

该指针装置的控制方法的特征在于,包括:

检测由于冲击而在上述线圈中产生的电动势的步骤;

根据通过上述检测部检测出的电动势,判定上述指针偏移的可能性高的方向的步骤;

判定上述指针是否由于上述冲击而向上述方向偏移的步骤;以及

在判定为上述指针偏移的情况下,与上述方向对应地修正上述指针的位置的步骤。

10.一种用于存储程序的存储介质,其特征在于,所述程序使处理器执行以下工序:

检测由于冲击而在驱动指针的步进电动机的线圈中产生的电动势的工序;

根据检测出的上述电动势,判定上述指针偏移的可能性高的方向的工序;

判定上述指针是否由于上述冲击而向上述方向偏移的工序;以及

在判定为上述指针偏移的情况下,与上述方向对应地修正上述指针的位置的工序。


技术总结


本发明提供一种指针装置、电子时钟、指针装置的控制方法和存储介质。电子时钟具备:指针;步进电动机,其具备线圈,驱动指针;驱动电路,其驱动步进电动机;A/D变换器,其检测由于冲击而在线圈中产生的电动势;CPU,其控制驱动电路的驱动,其中,CPU根据通过A/D变换器检测出的电动势,判定指针偏移的可能性高的方向,判定指针是否由于冲击而偏移,在判定为指针偏移的情况下,与指针偏移的可能性高的方向对应地修正指针的位置。

技术研发人员:

齐藤雄太;川口洋平;落合史章

受保护的技术使用者:

卡西欧计算机株式会社

技术研发日:

2020.11.20

技术公布日:

2021.05.21

本文发布于:2024-09-25 03:26:55,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/13138.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:极性   接点   脉冲   转子
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议