一种镧钐锆氧热障涂层材料及其制备方法与流程



1.本发明属于航空发动机热障涂层技术领域,涉及一种镧钐锆氧热障涂层材料及其制备方法。


背景技术:



2.目前,随着燃气轮机的推力和工作效率的不断提高,燃气进气温度也越来越高,涡轮叶片和其它热端部件使用的镍基高温合金的工作温度已逐渐接近其使用温度极限。热障涂层(thermal barrier coatings,tbcs)是利用陶瓷材料耐高温、耐冲刷、抗腐蚀和低热导性能,将其以涂层的形式与金属基体相复合的一种表面防护技术,以提高金属部件的工作温度,增强热端部件的抗高温能力,延长热端部件的使用寿命,提高发动机的工作效率。目前,广泛使用的ysz(6~8wt.%y2o3部分稳定化的zro2)热障涂层材料的长期最高使用温度不能超过1200℃,在冷却过程中由于相变产生单斜相而发生体积膨胀,从而导致涂层失效。然而,下一代高性能航空发动机热障涂层材料的长期使用温度必须超过1200℃。因此,研究新型热障涂层材料已成为研制下一代高性能航空发动机的关键课题。


技术实现要素:



3.本发明正是针对上述现有技术的不足而设计提供了一种镧钐锆氧热障涂层,其目的通过稀土复合,解决了单一锆酸镧热障涂层服役寿命不足和ysz服役温度不超过1200℃的问题,同时还降低了材料热导率,提升了材料热膨胀系数。
4.为解决此技术问题,本发明的技术方案是:
5.一种镧钐锆氧热障涂层材料,所述镧钐锆氧靶材的分子式为(la
x
sm
1-x
)2zr2o7,其中x=0.2-0.4。
6.一种制备镧钐锆氧热障涂层的方法,其特征在于:包括以下步骤:
7.步骤一,将原材料la2o3、sm2o3、zro2按照材料分子式比例混合,通过高温固相法合成镧钐锆氧靶材,合成温度1700-1900℃;
8.步骤二,采用真空电弧镀设备制备fecocraly作为热障涂层的金属底层,电压为600-650v,电流为12-18a;
9.步骤三,将镧钐锆氧靶材装入电子束物理气相沉积设备,通过电子束蒸发镧钐锆氧靶材,在fecocraly底层上制备镧钐锆氧热障涂层,电子束的束流强度1.1-1.3a,试样的温度800-1000℃;
10.步骤一原材料la2o3、sm2o3、zro2的纯度≥99.9%。
11.步骤一原材料混合应为机械球磨,时间≥8小时。
12.步骤一高温固相法合成时间≥12小时。
13.步骤二中真空电弧镀设备的真空度《1
×
10-2
pa;沉积时间≥100min。
14.步骤三中电子束物理气相沉积设备的真空度《5
×
10-2
pa;蒸发时间30-60min;热障涂层随炉自然冷却至200℃以下。
15.本发明的有益效果是:本发明作为一类新型热障涂层材料,镧钐锆氧热障涂层在1200℃长期热处理后没有相变发生,组织结构稳定(如图4所示),具有很高的相稳定性。其热膨胀系数与ysz比较接近(如图2所示),且具有较低的热导率(如图1所示)和较好的断裂韧性。同时利用电子束物理气相沉积技术制备镧钐锆氧热障涂层,将会使镧钐锆氧热障涂层具有独特的柱状晶结构(如图4所示),同时具有较好的热循环性能(如图3所示)。
附图说明
16.图1为实施例2热导率示意图;
17.图2为实施例2热膨胀系数示意图;
18.图3为实施例2热寿命示意图;
19.图4为本发明柱状晶结构示意图。
具体实施方式
20.为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域的普通技术人员在没有做出创造性劳动的前提下,所获得的所有其他实施例,都属于本发明保护的范围。
21.下面将详细描述本发明实施例的各个方面的特征。在下面的详细描述中,提出了许多具体的细节,以便对本发明的全面理解。但是,对于本领域的普通技术人员来说,很明显的是,本发明也可以在不需要这些具体细节的情况下就可以实施。下面对实施例的描述仅仅是为了通过示出本发明的示例对本发明更好的理解。本发明不限于下面所提供的任何具体设置和方法,而是覆盖了不脱离本发明精神的前提下所覆盖的所有的产品结构、方法的任何改进、替换等。
22.在各个附图和下面的描述中,没有示出公知的结构和技术,以避免对本发明造成不必要的模糊。
23.一种镧钐锆氧热障涂层材料,所述镧钐锆氧靶材的分子式为(la
x
sm
1-x
)2zr2o7,其中x=0.2-0.4。
24.镧钐锆氧热障涂层材料涂层的制备方法,包括以下步骤:
25.将原材料la2o3、sm2o3、zro2按照材料分子式比例混合,原材料的纯度≥99.9%,混合方式为机械球磨,时间≥8小时;通过高温固相法合成镧钐锆氧靶材,合成温度1700-1900℃,合成时间≥12小时;采用真空电弧镀设备制备fecocraly作为热障涂层的金属底层,真空度《1
×
10-2
pa,电压为600-650v,电流为12-18a,沉积时间≥100min;将所制备的靶材装入电子束物理气相沉积设备,真空度《5
×
10-2
p,电子束的束流强度1.1-1.3a,蒸发时间30-80min,制备热障涂层,随炉自然冷却至200℃以下。
26.实施例1:
27.⑴
、原材料配比:镧钐锆氧热障涂层材料分子式(la
0.35
sm
0.65
)2zr2o7称取原材料la2o3、sm2o3、zro2。
28.⑵
、高温固相合成:将原材料机械球磨12h,通过1850℃高温固相法合成镧钐锆氧靶材,合成时间16h;
29.(3)、底层制备:采用真空电弧镀设备制备fecocraly作为热障涂层的金属底层,真空度《1
×
10-2
pa,电压为620v,电流为14a,沉积时间175min;
30.(4)、热障涂层制备:将镧钐锆氧靶材装入电子束物理气相沉积设备。沉积工艺参数:真空度《5
×
10-2
pa,电子束流强度1.15a,蒸发时间60min,冷却至200摄氏度以下后,打开沉积设备得到镧钐锆氧热障涂层。
31.所制备镧钐锆氧热障涂层热导率1000℃的热导率为1.45w/(mk);热膨胀系数为10.55
×
10-6
k-1
;热寿命为780小时。
32.实施例2:
33.⑴
、原材料配比:镧钐锆氧热障涂层材料分子式(la
0.25
sm
0.75
)2zr2o7称取原材料la2o3、sm2o3、zro2。
34.⑵
、高温固相合成:将原材料机械球磨16h,通过1750℃高温固相法合成镧钐锆氧靶材,合成时间20h;
35.(3)、底层制备:采用真空电弧镀设备制备fecocraly作为热障涂层的金属底层,真空度《1
×
10-2
pa,电压为640v,电流为16a,沉积时间150min;
36.(4)、热障涂层制备:将镧钐锆氧靶材装入电子束物理气相沉积设备。沉积工艺参数:真空度《5
×
10-2
pa,电子束流强度1.25a,蒸发时间40min,冷却至200摄氏度以下后,打开沉积设备得到镧钐锆氧热障涂层。
37.在本发明工艺方法条件下,所制备镧钐锆氧热障涂层热导率1000℃的热导率为1.32w/(mk);热膨胀系数为10.77
×
10-6
k-1
;热寿命为920小时。
38.通过上述实施例结合附图可以看出,本发明技术方案:(1)利用电子束物理气相沉积技术制备热障涂层,将会使热障涂层具有独特的柱状晶结构,同时具有较好的热循环性能。(2)涂层设计上,通过稀土元素复合,获得均匀涂层结构,本发明既能降锆酸镧涂层的热导率,又能改善单一锆酸镧服役寿命不足的实际问题。
39.最后应该说明的是:以上实施例仅用以说明本发明的技术方案,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明揭露的技术范围内,可以轻易想到各种等效的修改或者替换,这些修改或者替换都应该涵盖在本发明的保护范围之内。

技术特征:


1.一种镧钐锆氧热障涂层材料,其特征在于:所述镧钐锆氧靶材的分子式为(la
x
sm
1-x
)2zr2o7,其中x=0.2-0.4。2.一种制备权利要求1所述的镧钐锆氧热障涂层的制备方法,其特征在于:包括以下步骤:步骤一,将原材料la2o3、sm2o3、zro2按照材料分子式比例混合,通过高温固相法合成镧钐锆氧靶材,合成温度1700-1900℃;步骤二,采用真空电弧镀设备制备fecocraly作为热障涂层的金属底层,电压为600-650v,电流为12-18a;步骤三,将镧钐锆氧靶材装入电子束物理气相沉积设备,通过电子束蒸发镧钐锆氧靶材,在fecocraly底层上制备镧钐锆氧热障涂层,电子束的束流强度1.1-1.3a,试样的温度800-1000℃。3.根据权利要求1所述的镧钐锆氧热障涂层的制备方法,其特征在于:所述步骤一原材料la2o3、sm2o3、zro2的纯度≥99.9%。4.根据权利要求1所述的镧钐锆氧热障涂层的制备方法,其特征在于:所述步骤一原材料混合应为机械球磨,时间≥8小时。5.根据权利要求1所述的镧钐锆氧热障涂层的制备方法,其特征在于:所述步骤一高温固相法合成时间≥12小时。6.根据权利要求1所述的镧钐锆氧热障涂层的制备方法,其特征在于:所述步骤二中真空电弧镀设备的真空度<1
×
10-2
pa。7.根据权利要求1所述的镧钐锆氧热障涂层的制备方法,其特征在于:所述步骤二中真空电弧镀设备的沉积时间≥100min。8.根据权利要求1所述的镧钐锆氧热障涂层的制备方法,其特征在于:所述步骤三中电子束物理气相沉积设备的真空度<5
×
10-2
pa。9.根据权利要求1所述的镧钐锆氧热障涂层的制备方法,其特征在于:所述步骤三中电子束物理气相沉积热障涂层蒸发时间30-60min。10.根据权利要求1所述的镧钐锆氧热障涂层的制备方法,其特征在于:所述步骤三中电子束物理气相沉积的热障涂层随炉冷却至200℃以下,所述的冷却为自然冷却。

技术总结


本发明属于航空发动机热障涂层技术领域,涉及一种镧钐锆氧热障涂层材料及其制备方法,所述的镧钐锆氧靶材的分子式为(La


技术研发人员:

申造宇 刘冠熙 戴建伟 牟仁德 何利民

受保护的技术使用者:

中国航发北京航空材料研究院

技术研发日:

2022.07.29

技术公布日:

2022/11/15

本文发布于:2024-09-24 07:18:15,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/11852.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:热障   涂层   电子束   所述
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议