导电浆料的研究现状与发展趋势

西安工程大学学报
J o u r n a l o fX i 'a nP o l y t e c h n i cU n i v e r s i t y
第33卷第5期(总159期)
2019年10月
V o l .33,N o .5(S u m.N o .159)
文章编号:1674-649X (2019)05-0538-11D O I :10.13338/j
.i s s n .1674-649x .2019.05.011  *综  述*
收稿日期:2019-04-10
基金项目:陕西省教育厅科学研究计划项目(15J K 1332);陕西省科学技术研究发展计划-工业攻关资助项目(2013K 09-33);陕西省重点研发计划项目(S 2018-J C -Y B -1093
)  通信作者:屈银虎(1962 ),男,西安工程大学教授,研究方向为电子浆料㊂E -m a i l :q u y i n h u @x p
u .e d u .c n  引文格式:周宗团,左文婧,何炫,等.导电浆料的研究现状与发展趋势[J ].西安工程大学学报,2019,33(5):538-548.
Z HO UZ o n g t u a n ,Z U O W e n j i n g
,H EX u a n ,e t a l .R e s e a r c h s t a t u s a n dd e v e l o p m e n t t r e n do f c o n d u c t i v e p a s t e [J ].J o u r n a l o fX i 'a nP o l y t e c h n i cU n i v e r s i t y
,2019,33(5):538-548.导电浆料的研究现状与发展趋势
周宗团1,
左文婧2,何 炫2,张学硕2,高浩斐2,王钰凡2,屈银虎2(1.西安工程大学机电工程学院,陕西西安710048;2.西安工程大学材料工程学院,陕西西安710048
)摘要:导电浆料是高技术电子功能材料,主要由导电相㊁黏结相和液体载体3部分组成㊂通过综述
导电相A u ,A g
,C u ,碳系等浆料,玻璃黏结相和液体载体的研究概况,指出导电浆料未来的发展趋势㊂认为:A u ,A
g 虽然是目前发展最为成熟的导电相,但其价格昂贵;贱金属C u 具有价格低廉㊁优良的耐迁移性以及与银相近的电阻率等优点;碳系浆料机械强度大,导电导热性好;贱金属导电相与碳系导电相通过一定的处理后,将有可能取代A u ,A g 作为导电相的趋势㊂传统玻璃型黏结相和有机载体的含量㊁形状㊁粒度㊁表面性质㊁添加剂等因素均对浆料的性能产生协同作用和影响㊂低熔点金属黏结相和水基载体不仅提高了浆料的导电性而且环保无污染㊂因此,发展高性能贱金属
导电相㊁复合导电相㊁低熔点金属黏结相㊁环保水基载体或将成为未来导电浆料的主流㊂关键词:导电浆料;贱金属;黏结相;液体载体中图分类号:T M241    文献标志码:
A R e s e a r c h s t a t u s a n dd e v e l o p
m e n t t r e n d o f c o n d u c t i v e p a s t e Z H O UZ o n g t u a n 1,Z U O W e n j i n g 2,
H E X u a n 2,Z HA N G X u e s h u o 2
,G A O H a o f e i 2,WA N GY u f
a n 2,Q UY i n h u 2(1.S c h o o l o fM e c h a n i c a l&E l e c t r i c a l E n g i n e e r i n g ,X i 'a nP o l y t e c h n i cU n i v e r s i t y ,X i 'a n710048,C h i n a ;2.S c h o o l o fM a t e r i a l sS c i e n c e&E n g i n e e r i n g ,X i 'a nP o l y t e c h n i cU n i v e r s i t y
,X i 'a n710048,C h i n a )A b s t r a c t :T h e c o n d u c t i v e p a s t e i s ah i g h -t e c he l e c t r o n i c f u n c t i o n a lm a t e r i a lm a i n l y c o m p
o s e do f a c o n d u c t i v e p h a s e ,ab i n d e r p h a s e a n da l i q u i dv e h i c l e .T h e r e s e a r c h p r o g
r e s s o f c o n d u c t i v e p h a s e A u ,A g ,C u ,g l a s s b i n d e r a n d l i q u i dv e h i c l e s i s i n t r o d u c e d ,a n d t h e f u t u r e d e v e l o p m e n t t r e n do f c o n d u c t i v e p a s t e i s p r o s p e c t e d .I t i s c o n s i d e r e d t h a t a l t h o u g hA u ,A g
i s t h em o s tm a t u r e c o n d u c -
t i v e p h a s e a t p r e s e n t,i t i s e x p e n s i v e;b a s em e t a lC uh a s t h ea d v a n t a g e so f l o w p r i c e,e x c e l l e n t m i g r a t i o n r e s i s t a n c e a n d s i m i l a r r e s i s t i v i t y t os i l v e r;c a r b o ns l u r r y h a sh i g h m e c h a n i c a l s t r e n g t h a n d g o o d c o n d u c t i v i t y a n d t h e r m a l c o n d u c t i v i t y.A s t h e c o n d u c t i v e p h a s e,i t i s t h e t r e n d t h a tA u,
A g w i l l b e r e p l a c e db y m o d i f i e dC ua n d c a r b o n s l u r r y.T h e c o n t e n t,s h a p e,p a r t i c l e s i z e,s u r f a c e p r o p e r t i e s,a d d i t i v e s o f t h e t r a d i t i o n a l g l a s s-t y p e
b i n d e r p h a s e a n do r g a n i c v e h i c l e a l l h a v e s y n e r-g i s t i c e f f e c t s a n d i n f l u e n c e o n t h e p e r f o r m a n c e o f t h e p a s t e.T h e l o w-m e l t i n g m e t a l b i n d e r p h a s e a n d t h ew a t e r-b a s e d v e h i c l e n o t o n l y i m p r o v e t h e c o n d u c t i v i t y o f t h e p a s t e b u t a l s o c a u s e n o e n v i-r o n m e n t a l p o l l u t i o n.T h e r e f o r e,t h eh i g h-p e r f o r m a n c eb a s e m e t a l c o n d u c t i v e p h a s e,c o m p o s i t e c o n d u c t i v e p h a s e,l o w-m e l t i n g m e t a l b o n d e d p h a s e a n d e n v i r o n m e n t-f r i e n d l y w a t e r-b a s e d v e h i c l e s
w i l l b e c o m e t h em a i n s t r e a mo f f u t u r e c o n d u c t i v e p a s t e d e v e l o p m e n t.
K e y w o r d s:c o n d u c t i v e p a s t e;b a s em e t a l;b i n d i n gp h a s e;l i q u i dv e h i c l e s
0引言
电子浆料是制造电子元器件的基础材料,是一
种由固体粉末和有机溶剂均匀混合的膏状物㊂作
为集冶金㊁化工㊁电子技术于一身的高技术电子功
能材料,电子浆料被视为部件封装㊁电极和互连的
关键材料,主要用于制造集成电路㊁电阻器㊁电容
器㊁导体油墨㊁太阳能电池电极㊁印刷及高分辨率导
电体㊁导电胶㊁敏感元器件及其它电子元器件,一直
以高质量㊁高效益㊁技术先进等特点广泛应用于航
空㊁化工㊁印刷㊁建筑以及军事等各个领域,且具有
无可替代的地位,被称为信息时代的 功臣 [1-3]㊂随着电子设备应用的空前普及,以及电子信息技术
的快速发展,高集成化㊁轻量化㊁智能化㊁绿化已
然成为电子产品的发展方向,因而对作为核心材料
的电子浆料的需求也越来越多,性能要求也越来越
公交车线路牌高㊂目前,我国对电子浆料的研究主要集中在导电
验货平台
浆料方面[1]㊂
导电浆料主要由导电相㊁黏结相和液体载体3部分组成,经混合搅拌㊁三辊轧制后形成均匀膏状物,通过丝网印刷技术印刷于玻璃片或陶瓷基片上,经激光㊁高温烧结或烘干等固化工艺制成厚度为几微米到数十微米的膜层㊂在导电浆料中,导电相主要是金属㊁合金或其混合物㊂导电相不仅决定浆料的电性能,还对导电膜的物理和机械性能产生影响㊂黏结剂通常为玻璃㊁氧化物晶体或二者的混合物,主要用来保证膜层与基材的附着强度以及膜层的物理化学性能㊂有机载体是一种溶解于有机溶剂的聚合物溶液,主要用于控制浆料流变特性㊁印刷性能和对基材的初始附着力㊂本文从导电相㊁黏结相㊁液体载体3方面阐述导电浆料的研究现状并对其研究㊁发展趋势进行预判㊂1导电相
导电相作为电子浆料的主要成分,其形状㊁质量及性能对浆料的电性能,产品的物理㊁机械性能有很大的影响㊂导电相通常以球形㊁片状或纤维状分散于有机载体中,待电子浆料固化后构成导电网格或导电通路,是浆料中的主要功能相,其含量一般为浆料的50%~90%[4]㊂在导电浆料中,导电相一般是金属㊁合金或混合物,主要包括A u,A g, P t,P t/A u,P d,A g/P d,C u,N i,A l等㊂目前所用合金导电相主要为P t/A u,A g/P d等,A u,P t,P d价格是A g的几百倍,是C u的几千到几万倍,价格极高,几乎无法实现规模化生产,因此,本文主要讨论高导电性纯金属导电相㊂
1.1金导体浆料
以金作为主要功能相的导电浆料性能优良,导电性好,细线分辨率高,具有印刷性能优良,膜层表面
平整,背光孔隙度小,膜边沿收缩率小以及切面密度高等优点㊂金导电浆料通常被用于多层布线导体㊁气敏元件㊁微波混合集成电路以及大功率晶体管芯片和引线框架等高可靠性㊁高密度的厚膜集成电路中[5]㊂虽然金导电浆料性能优异,但由于金价昂贵,使得金导电浆料的使用受到限制㊂
研究发现形貌为球形或类球形㊁振实密度高㊁粒径在微米或亚微米的金粉制备的导电浆料性能最为优异[5]㊂赵科良等[6]采用化学还原法对雷酸金(A u(HO N C)3)进行还原,制备出高性能的亚微米级球形金粉用于厚膜导电浆料,实验表明,所得金导电浆料具有良好的导电性能和烧结特性以及致密的烧结膜层㊂关俊卿等[7]以抗坏血酸(V C)为还原剂还原氯金酸(H A u C l44H2O),制备出粒
935
第5期周宗团,等:导电浆料的研究现状与发展趋势
径为1~3μm的高致密球形金粉作为功能相,制备出的厚膜导电浆料黏度适中,线分辨率高,印刷性能优良㊂赵莹等[5]选用分散性好㊁表面光滑的球形金粉,对比了粒径分别为2.87μm,1.18μm, 1.02μm和0.41μm的4种不同金粉对导电浆料性能的影响㊂发现,金粉粒度太大或太小都不能获得薄而致密的烧结膜;在一定尺寸范围内,不同尺寸金粉颗粒按比例混合,可以改善烧结膜的多孔性并降低电阻率㊂金粉颗粒表面形态㊁尺寸大小㊁分散性及均匀性是决定浆料印刷性能和烧结性能的关键因素,因此,金粉对金导电浆料的研究显得尤为重要㊂
1.2银导体浆料网页抓取数据>速录器
虽然金导电浆料性能优异,但价格昂贵一直是其应用的桎梏,因此,在电子工业中,性价比更高的银及其化合物作为功能相的导电浆料的研究与应用最为广泛,在上千种电子浆料产品中,约80%采用各类银粉作为主体功能相㊂在众多贵金属中,银价格相对低廉,有利于控制成本;同时银层能在陶瓷表面形成连续致密的均匀薄层,对陶瓷表面具有强大的附着力,因此,在相同面积㊁厚度的陶瓷导电层中,银电极所得的电容量比其他电极材料都要大㊂但银在电场作用下会产生电子迁移,使导电性能降低,影响器件的使用寿命,这是银导电浆料在电子产品使用中的一大缺陷[8]㊂对此,研究者进行了大量研究实验,其中通过改善银粉微粒尺寸㊁形貌等方法来提高银浆的导电性能就是最有效的方法之一㊂导电浆料中,银粉形貌和含量对厚膜浆料的致密性和电阻率影响显著,合理控制导电银粉微米颗粒和纳米颗粒的级配能制备出烧结更致密㊁导电性更好的导电浆料㊂
谢燕青等[9]选择烧结后能形成网状结构的非球状银粉作为功能相,制备出平均粒径在400n m 左右的银浆料,利用微细笔直写线宽低于200μm,厚度最大可达10μm的导线,再通过普通烧结后,方阻稳定在5mΩ/口左右㊂J o h n等[10]用30n m左右的纳米银制备纳米银浆㊂实验结果表明,纳米银浆经280ħ烧结后,内部出现大量微孔,相对密度为80%,弹性模量为9G P a,电导率和热导率分别为2.6ˑ105Ωc m和2.4W/(c m K)㊂S o h n等[11]通过电子束照射法制备出直径约150n m的银颗粒,结果表明,当纳米银颗粒质量分数为90%时制备的银浆导电能最优,导电率为1.6ˑ104S/c m,是热分解法
制备银颗粒获得银浆料的1.6倍㊂图1分别为质量分数90%的电子束照射法制备的银纳米颗粒银浆与商用热分解法制备的银颗粒银浆的S E M图,可清楚的看出,电子束法制备的银颗粒更小,颗粒间的连接更加紧密且分散均匀
(a)电子束照射法(平面)(b)电子束照射法(截面
)双立柱卧式带锯床
(c)商用热分解法(平面)(d)商用热分解法(截面)
图1电子束照射银纳米粒子与商用银纳米
粒子S E M图[11]
F i g.1S E Mi m a g e s o f s i l v e r p a s t e f r o m K A E R I's s i l v e r
n a n o p a r t i c l e a n d c o mm e r c i a l s i l v e r p a s t e[11]
粉末最紧密堆积理论指出,不同粒径的粉体搭配能得到空隙率较低的粉体体系,这种粉体体系经烧结后能得到致密的㊁导电性优良的导电膜层㊂而且研究发现[12],在相同体积,相同配比的情况下,片状微粒的电阻比球状微粒电阻要小㊂主要因为球形微粒之间形成的是点接触,而片状微粒之间是面接触或线接触㊂印刷后,在一定厚度时,片状微粒相互形成鱼鳞状重叠,颗粒间流动性好,利于银浆的烧结和致密化,从而具有更好的导电性能㊂S e o等[13]将1.6μm,0.8μm,20~50n m银粉按一定比例混合后制成复合银粉,发现烧结温度为550ħ时,最低方阻达5mΩ/口㊂F a d d o u l等[14]通过将平均直径为2~4μm的球状和片状银粉混合在一起,制成含银量70%的导电浆料,在875ħ烧结后,最终烧成银膜电阻率为3.3μΩ㊃c m㊂Z h o u等[15]分别制备了4种不同形貌和尺寸银粉的银浆料,在800ħ下烧结,发现随着球状银粉尺寸减小(6μm, 5μm,2μm,0.7μm),电阻率逐渐降低,而6μm片状银粉制备的导电浆料电阻率仅为3.46μΩ㊃c m,远远小于同尺寸球状银粉导电浆料㊂谢湘洲等[12]选取平均粒径分别为,,的球形银粉以及平
045西安工程大学学报第33卷
均粒径为3~6μm的片状银粉以最佳比例制得导电浆料,结果表明,在大颗粒间填充小颗粒能增加粉体堆积的致密度,明显降低烧结后膜层的方阻,实验制得的银膜外表致密光洁,可焊性㊁耐焊性良好,
方阻为3.78mΩ/口㊁附着力>40N/m m2㊂滕媛[16]等选取了平均粒径为0.50,0.91,2.09,3.36μm的球形银粉和4.31μm的片状银粉与纳米级银粉搭配制备无铅导电银浆㊂研究结果表明,当为纯球形银粉或片状银粉时,球形银粉制备的银浆电阻率和附着力最优,且球形银粉粒径为0.91μm时最优,电阻率为33.31μΩ㊃c m,附着力为3.19N;添加纳米级银粉能改善银浆的电性能,在添加量为4%时最优,电阻率为30.90μΩ㊃c m,附着力为3.25N;添加片状银粉的含量在8%时最优,电阻率为27.71μΩ㊃c m,附着力为3.48N㊂
作为导电浆料中最为普遍的一类,银浆料为了避免其中银迁移的自身缺陷,同时减少银导电浆料中银粉的用量,降低生产成本,银粉一方面朝着片状和纳米级银粉方向发展,另一方面通过在银粉中掺杂贱金属(N i㊁A l㊁C u等)或其他导电物质,与银粉末制成混合粉末或复合粉末,减少贵金属银粉的用量,降低浆料生产成本㊂
W a n g等[17]进行了在高温纳米银浆中添加钯颗粒的研究,通过研究发现,钯颗粒的加入显著地延迟了银的迁移㊂陆冬梅等[18]通过采用形貌㊁粒度分布不同的银粉,同时添加超细钯粉抑制银离子迁移,结果表明,在-60~+125ħ范围内冲洗100次,该电极层不开裂㊁不脱落,电极层附着力在40N以上,满足了厚膜产品的需要,同时,该浆料有较好的工艺适应性㊂宋爽等[19]用超细银包铜粉制备导电浆料,在最佳的镀银条件下,低含银量的镀银磷化铜粉的电阻值大于高含银量的,随着银含量的增加电阻值逐渐减小㊂汪浩等[20]通过在椰壳活性炭粉末表面镀覆一层银单质来制备一种化学镀银活性
炭导电填料,并使用其制备导电浆料,当填料含量为45%时,导电浆料方阻达到0.095Ω/口㊂陈绍兰[21]自制含银60%的银包铜粉作为导电相,制备聚合物复合导电浆料,研究结果表明,该复合导电浆料与含银量为50%银浆相比,节约银14%,实现了银包铜粉最优化使用和导电浆料成本的最低化,经济效益十分可观㊂朱晓云[22]采用置换-还原法制备银包铜粉,并将其作为导电相在最佳配方下制备浆料,最终得到浆料方阻为14.60mΩ/口,并且具有优良的稳定性和附着力㊂以此科技成果建成了年产400t银包铜粉㊁2t银包铜粉浆料和100t银包铜粉电磁屏蔽涂料生产线,2年内累计新
增产值6300万元㊂
1.3铜导体浆料
由于贵金属金㊁银作为导电填料的电子浆料成本较高,因此,电子浆料的研发方向逐渐转向贱金属导电填料㊂相较于其他金属类填料,铜粉作为贱金属,来源广泛,价格低廉,导电性能与银相近(20ħ时,银的电阻率为1.59ˑ10-6Ω㊃c m,铜的电阻率为1.72ˑ10-6Ω㊃c m),且具有优良的耐迁移性能㊂但是,铜化学性质较活泼,在空气或高温环境中极易被氧化生成难以导电的氧化铜或氧化亚铜,导致电阻率增大[23]㊂因此,研究人员展开大量研究,以期改善其缺点,使铜电子浆料更具竞争力㊂
铜浆料中的铜颗粒可以由多种方法合成,张凯[24]以氢气还原铜氧化物,以铜粉㊁玻璃粉㊁乙基纤维素㊁松油醇为原料,通过正交实验制备铜电子浆料,并将其应用到钛酸锶压敏电阻器上㊂彭帅[25]以
悬浮机器人立方氧化亚铜为前驱体制备出分散性优良,比表面积小,振实密度为4.0g/c m3的球形铜粉,并以其作为填料制备导电铜浆,得到组织致密㊁可焊性良好,附着力为0.94k g/m m2的铜膜㊂刘晓琴[26]通过研究超细铜粉表面改性工艺,以抗坏血酸为还原剂和稳定剂,聚乙烯吡咯烷酮为分散剂,运用化学液相还原法将C u2+还原成单质C u,以优化的最佳配比制备铜电子浆料,高温烧结后制备的导电铜膜具有良好的导电性能,方阻为12.62mΩ/口㊂减小颗粒尺寸是获得高导电性浆料的重要方法,T a m等[27]认为使用不同铜前驱体混合物制备纳米铜粉对调控纳米粒子尺寸起着重要作用,故使用铜-氨络合物和氢氧化铜作为前驱体合成了12~99n m的铜颗粒,并将其制成导电浆料㊂发现铜粒子不仅易于分散,且在低温(120ħ)烧结处理后具有优良的导电性能,电阻率约为5.8ˑ10-5Ω㊃c m㊂不仅仅是减小颗粒尺寸,增加颗粒之间的接触,也是提高浆料导电性的重要方法㊂与银浆类似,不同尺寸的铜颗粒有利于提高浆料的导电性㊂K a n z a k i等[28]以草酸作为抗氧化剂,以1-氨基-2-丙醇包覆低于10n m的铜纳米颗粒,制备纳米㊁亚微米㊁微米级复合铜浆㊂研究发现,在150ħ空气中烧结较短时间时,铜膜电阻率可达5.5ˑ10-5Ω㊃c m,同时还发现在N2环境中120ħ烧结温度下,薄膜电阻率为8.4ˑ10-6Ω㊃c m㊂
145
第5期周宗团,等:导电浆料的研究现状与发展趋势
T a m[29]使用铜微片与铜纳米颗粒的混合粉体来制备浆料,铜微片可以有效地抑制裂纹在铜膜烧结过
程中的形成㊂当铜微片与纳米颗粒以2ʒ8制备浆料时,其薄膜电阻率可达28μΩ㊃c m㊂Y o n g[30]以D-异抗坏血酸作为还原剂,通过如图2所示的氧化预热过程在铜表面生成凸面㊁纳米棒或纳米颗粒,促进颗粒在烧结过程中紧密连接,实现了低温下铜膜的高导电性㊂为了提高铜浆料的导电性,尚润琪[4]提出了 微胶囊 模型,对铜粉进行有机物微胶囊抗氧化处理,并分别选用管径为1~2n m高纯单壁碳纳米管和片径为5n m的石墨烯纳米碳与铜粉按一定比例作为混合导电相,制备出高性能的纳米碳-铜复合浆料,其电阻率分别为6.06mΩ㊃c m, 2.15mΩ㊃c m㊂时晶晶等[31]同样利用微胶囊技术在铜粉表面包覆液体石蜡,并添加少量碳纳米管作为导电增强相,制备出碳纳米管-铜复合浆料㊂研究结果表明,液体石蜡包覆质量分数为4%的微胶囊铜粉具有良好的导电性和抗氧化性㊂Q u等[32]制备石墨烯复合铜浆料,发现当石墨烯与铜粉的质量比为3ʒ97时,电阻率达到最小值2.68mΩ㊃c m,与铜浆相比降低了92.22%,并以此制备导电涂层,发现其中较短的石墨烯均匀地分散在铜粉的间隙之间,较长的石墨烯形成 交叉桥 ,构建了完整的导电通路㊂K a j i t a等[33]通过铜粉和酚醛树脂配成浆料,发现三乙醇胺和脂肪酸在铜膜中相互作用,降低了铜电阻率且避免了铜的氧化,且此浆料的保存寿命比一般用浆料寿命长㊂D o n g等[34]将溶胶-凝胶法制备的二氧化硅包覆铜粉作为铜浆料的导电相并在低温共烧陶瓷基板上印刷形成铜膜㊂经测试分析发现,二氧化硅质量分数为2%的铜膜形态致密,具有良好的黏合力,薄膜的方阻为6mΩ/口㊂此外,以银包铜粉作为导电相也是改善铜浆料氧化问题的重要方法㊂W u[35]等通过置换反应制备均匀分散的银包铜粉,并将银质量分数为53.91%的银包铜粉制成浆料,在800ħ空气中烧结得到膜层方阻仅为0.036Ω/口㊂
图2氧化预热过程的示意图[30]
F i g.2 S c h e m a t i c d i a g r a mo f o x i d a t i o n p r e h e a t i n gp r o c e s s[30]
1.4碳系导体浆料
除了以金属㊁金属氧化物作为导电填料外,常用的还有碳系导电填料,包括炭黑㊁石墨㊁碳纤维㊁碳纳米管等[36]㊂黄江伟[37]优选具有高导电性能㊁粒度分布主要在5~10μm的片状石墨粉为导电填料,采用多次搅拌-真空排泡分散技术,获得了高石墨填充密度㊁高柔性的石墨导电油墨㊂随着印刷电子的不断发展,新型碳系导电填料逐渐成为新的研究与应用热点,其中碳纳米管和石墨烯就是两种较为理想的优质填料㊂碳纳米管管壁以碳六元环为基本骨架,长径比可达到1000以上,具备良好的导电性㊁力学性能,易于搭建导电通路[38]㊂石墨烯是单原子层的二维纳米材料,机械强度大,具有优异的导电导热性能,电导率为108S/m,比金属铜和银更优[39-40]㊂华成杰[41]以不同配比石墨烯-炭黑为导电填料制备复合导电浆料㊂研究结果表明,该导电浆料具有良好的印刷适应性与储存稳定性,印制的导电涂层中导电填料分散良好,形成的导电网络完善,印制涂层的表面形貌平整,二维石墨烯和零维炭黑有效搭接形成导电网络,降低了碳浆的电阻率㊂碳纳米管和石墨烯作为新型碳系导电填料具有极大的发展潜力和良好的应用前景,但是其本身的分散性和稳定性还有待改善,同时因为成本昂贵,新型碳系浆料目前并未形成大规模量产与应用㊂
245西安工程大学学报第33卷

本文发布于:2024-09-20 13:37:03,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/104964.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:导电   浆料   制备   研究   银粉
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议