双环戊二烯开环易位聚合反应用催化剂的研究进展

第49卷第1期
上㊀海㊀塑㊀料SHANGHAIPLASTICS
Vol.49No.1㊀2021㊀
基金项目:上海市科委高新技术领域项目(185****9200)
作者简介:时萌珣(1995 )ꎬ男ꎬ在读硕士研究生ꎬ研究方向为聚烯烃催化技术ꎮ通信作者:杨维成(1982 )ꎬ男ꎬ高级工程师ꎻywcjc@163.comꎮ
罗㊀勇(1974 )ꎬ男ꎬ教授级高工ꎻluoyongno.1@163.comꎮ
DOI:10.16777/j.cnki.issn.1009 ̄5993.2021.01.002
双环戊二烯开环易位聚合反应催化剂的研究进展
时萌珣1ꎬ㊀刘㊀前1ꎬ㊀刘㊀建1ꎬ㊀段高坤1ꎬ
方超立1ꎬ㊀杨维成1ꎬ2ꎬ3ꎬ㊀罗㊀勇1ꎬ2ꎬ3
(1.上海化工研究院有限公司ꎬ上海200062ꎻ
2.聚烯烃催化技术与高性能材料国家重点实验室ꎬ上海200062ꎻ
3.上海市聚烯烃催化技术重点实验室ꎬ上海200062)
摘㊀要:聚双环戊二烯(PDCPD)是由双环戊二烯(DCPD)聚合而成的高分子化合物ꎬ作为一种新型高性能树脂ꎬ近年来其市场需求急速发展ꎮ为制备PDCPD材料ꎬ聚合反应中的催化剂是技术关键ꎬ直接决定了产品的性能与制备工艺的经济性ꎮ主要基于催化技术的发展过程ꎬ从催化剂的结构与功能等方面ꎬ介绍了目前DCPD聚合制备PDCPD过程中所采用的主要催化剂的发展现状ꎮ关键词:聚双环戊二烯ꎻ开环易位聚合反应ꎻ催化剂
中图分类号:TQ342㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1009 ̄5993(2021)01 ̄0012 ̄09
DevelopmentofCatalystTechnologyinRing ̄openingMetathesis
PolymerizationofDicyclopentadiene
SHIMengxun1ꎬ㊀LIUQian1ꎬ㊀LIUJian1ꎬ㊀DUANGaokun1ꎬ㊀FANGChaoli1ꎬYANGWeicheng1ꎬ2ꎬ3ꎬ㊀LUOYong1ꎬ2ꎬ3
(1.ShanghaiResearchInstituteofChemicalIndustryCo.ꎬLtd.ꎬShanghai200062ꎬChinaꎻ
2.StateKeyLaboratoryofPolyolefinsandCatalysisꎬShanghai200062ꎬChinaꎻ3.ShanghaiKeyLaboratoryofCatalysisPolyolefinsꎬShanghai200062ꎬChina)
Abstract:Polydicyclopentadiene(PDCPD)ispolymerizedfromdicyclopentadiene(DCPD)ꎬperformingasanexcellentpolymerꎬitsmarketdemandisgrowingrapidlyinrecentyears.InordertopreparePDCPDmaterialsꎬthecatalystsusedinthepolymerizationisthekeytechnologyꎬwhichdirectlydeterminetheperformanceandeconomicsofpreparation.Basedonthedevelopmentprogressofcatalytictechnologyꎬfromth
etechnicalaspectsofcatalyststructureandfunctionꎬ
themaincatalystsofDCPD spolymerizationareintroducedꎬandreviewedthedevelopmentofcatalysttechnology.Keywords:PDCPDꎻring ̄openingmetathesispolymerizationꎻcatalyst
0㊀前言
聚双环戊二烯(PDCPD)是一种以双环戊二烯
(DCPD)为原料ꎬ经有机金属化合物催化聚合形成的一种具有轻度交联结构的热固性工程树脂ꎬ其最显著特点是力学性能平衡ꎬ兼具刚性和韧性ꎬ具有
较高的弯曲强度以及抗冲击强度ꎮ与其他工程塑料相比ꎬ具有优良的综合性能:耐热性优于聚氨酯㊁聚氯乙烯㊁聚乙烯㊁聚丙烯等材料ꎻ尺寸稳定性优于聚氨酯ꎻ抗蠕变性优于尼龙ꎮPDCPD还兼具质轻㊁耐腐蚀㊁耐低温㊁吸水率低㊁涂覆性好等优点ꎮ
因此ꎬPDCPD作为新一代高分子材料ꎬ成为当今研究热点ꎬ有望在众多领域成为主导材料ꎮ目前ꎬP
DCPD在通信设备㊁电器设备㊁交通设施㊁体育设施㊁铸造配件㊁土木建筑材料中都有广泛应用ꎬ近几年其市场需求也在不断扩大ꎮ
1㊀PDCPD简介
PDCPD由DCPD通过金属有机化合物催化聚
合形成ꎬ具有轻度交联的结构(见图1)ꎮPDCPD
聚合反应称为开环易位聚合(ROMP)反应ꎬ反应单元的本质实际是烯烃复分解反应ꎬ反应过程中存在四元环结构中间体(见图
2)ꎮ
图1㊀PDCPD
的聚合和分子结构
图2㊀烯烃复分解反应
㊀㊀目前公认的聚合反应机理中ꎬ活性中心是金属卡宾(见图3)ꎮ金属卡宾与DCPD中的双键形成含有金属四元环结构的中间体ꎬ随后以易位方式发生裂解ꎬ形成金属卡宾配合物
[1]
ꎬ这是反应的链引
发阶段ꎮ单体继续插入ꎬ增长的金属卡宾与金属四元环不断交替出现ꎬ循环进行[2]ꎬ为链增长阶段ꎮ
反应持续进行ꎬ最终形成具有轻度交联的三维网状结构的高分子量聚合物
图3㊀DCPD聚合反应机理
㊀㊀在PDCPD材料的制备过程中ꎬ催化剂是工艺的关键和技术源头ꎬ也是开发材料成型工艺㊁发展PDCPD基复合材料的前提和技术保障[3]ꎮ一方面ꎬ催化剂的活性㊁稳定性直接决定了聚合反应过程和树脂材料的力学性能ꎬ制备成本决定着催化剂的工业应用价值ꎻ另一方面ꎬ催化剂性能更优㊁耐受性更好ꎬ使得PDCPD的功能化应用成为可能ꎮ
目前广泛使用的烯烃复分解反应催化体系基本可以分为双组分催化剂和单组分金属卡宾类催化剂ꎮ单组分金属卡宾类催化剂主要为钌卡宾类的催化剂ꎬ其中以Schrock型催化剂㊁Grubbs催化剂㊁Hoveyda ̄Grubbs催化剂最具代表性ꎮ
2㊀双组分催化剂
最早开始应用于DCPD聚合反应的是双组分催化剂ꎮ
双组分催化体系通常由主催化剂和助催化剂
组成ꎮ主催化剂为过渡金属的卤化物(如WCl6㊁MoCl5㊁ReCl5㊁RuCl3)或过渡金属氯氧化物(如WOCl4)ꎻ助催化剂为强路易斯酸类物质(如烷基铝及其衍生物㊁SiCl4㊁RMgI㊁苯乙炔等)ꎮ主催化剂在助催化剂的辅助下形成高活性的金属卡宾以催化ROMP反应进行ꎬ主催化剂的质量决定催化所形成的活性物种金属卡宾的质量ꎬ而助催化剂的质量决定金属卡宾的形成速率ꎮ
以铝/钼为主催化剂的双组分催化剂研究与工业应用多发生在20世纪80年代ꎮ美国Hercules
公司采用Et2AlCl为助催化剂[6]ꎬWCl6/WOCl4为主催化剂[4 ̄5]形成金属卡宾ꎬ以激发催化活性ꎮ同时期ꎬ美国Goodrich公司在专利中采用[(C12H25)3NH]4Mo8O
26为主催化剂ꎬEt2AlCl和SiCl4为助催化剂ꎬ成功催化了DCPD的ROMP反应[7 ̄8]ꎮ
双组分催化体系比较敏感ꎬ通常在体系中加入
醇㊁酚类等物质ꎬ其羟基作为配体与金属中心配位ꎬ减少钨与水㊁氧接触的概率ꎬ形成较稳定的化合物ꎮ这些不同类型配体对钨的电子效应各异ꎬ造成
31 第1期㊀时萌珣ꎬ等:双环戊二烯开环易位聚合反应用催化剂的研究进展㊀㊀㊀㊀㊀㊀㊀
W Cl键的电子云密度也不同ꎬ与助催化剂反应形成卡宾的速率也有所差别ꎬ因此ꎬ使用不同类型的配体可以得到具有不同活性的催化体系ꎮ此外ꎬDCPD的ROMP反应会快速放热ꎬ即使在室温下反应速率也较快ꎬ往往会产生暴聚现象ꎬ影响聚合反应的稳定性ꎮ为满足反应注射成型工艺的实际操作需求ꎬ常加入路易斯碱㊁胺㊁β ̄二酮㊁醚类作为反应的延缓剂ꎮ催化剂组分中的助催化剂也可调控ꎬ在原先单组分助催化剂的基础上添加其他物质形成双组分助催化剂ꎬ能够更好地控制聚合反应ꎬ如加入Et2AlIꎬ可以控制聚合凝胶时间ꎬ提高PDCPD树脂交联度ꎮ
总体而言ꎬ采用双组分催化剂的制备成本较低廉ꎬ体系中形成的钨卡宾㊁钼卡宾对ROMP反应具有较好活性ꎬ至今仍用于PDCPD材料的工业生产ꎮ然而ꎬ此类催化剂缺点明显:一方面催化剂对空气㊁
水以及大部分官能团极其敏感ꎬ微量湿气即可影响模具边缘部分催化剂的活性ꎬ造成边缘部分硬化较差ꎻ另一方面其所用的助催化剂(烷基铝)非常不稳定ꎬ遇水爆炸㊁遇氧燃烧ꎬ实际应用十分复杂ꎮ另外ꎬ双组分催化剂难以判断活性中心位置ꎬ研究其机理相对困难ꎬ聚合物的立体结构控制也有一定难度ꎮ
3㊀单组分催化剂
自1971年法国石油研究院CHAUVINY阐明金属四元环反应机理[1]后ꎬ许多科学家以此机理为基础ꎬ开发出各类高效的单活性中心催化剂ꎮ目前对制备PDCPD用催化剂的研究与应用聚焦在金属卡宾类催化剂上ꎬ即本身结构就含有金属卡宾并可引发聚合的单分子催化剂ꎬ主要代表为Schrock型催化剂和Grubbs催化剂ꎬ以及以Grubbs催化剂为基础改良的Hoveyda ̄Grubbs催化剂ꎮ
Schrock型催化剂的发现是研究ROMP反应的一个重要里程碑ꎮ通过化学结构上的改变ꎬ可以在更大的范围内调节催化剂活性ꎮ以Grubbs催化剂为代表的钌催化体系更易制备和控制ꎬ活性更强ꎬ多为活性聚合催化剂ꎬ能够催化含有各种不同类型官能团的单体ꎬ在空气和水的介质中表现出良好的稳定性ꎮ
3.1㊀钽㊁钨㊁钼体系催化剂
钽㊁钨㊁钼体系催化剂的代表即为Schrock型催化剂ꎮ
SCHROCKRR等[9]合成含钽金属卡宾的配合物[Ta(CHCMe3)3Cl(PMe3)(OCMe3)2]ꎬ其中的钽处于最高氧化价态(+5)ꎮ由于存在叔丁氧基配体ꎬ该配合物的催化活性要高于当时其他类似配合物ꎮ
在早期烯烃复分解催化剂的开发研究中ꎬ常以金属钼和钨作为催化中心ꎬSCHROCKRR等[10]基于钼的高氧化态亚烷基配合物ꎬ开发出几种单活性中心钼卡宾化合物ꎬ并得到了通式为[Mo(CHCMe2Ph)(N Ar)(OR)2
]的配合
物[11 ̄12](见图4)ꎮ
㊀㊀
图4㊀几种代表性的Schrock型催化剂㊀㊀相比双组分催化剂ꎬSchrock型催化剂引发机理更为清晰ꎮ这些金属卡宾配合物是当时催化活性最高且结构明确的单组分烯烃复分解催化剂ꎮ该类催化剂对大多数不同空间㊁电子效应的底物都具有很高的催化反应活性ꎬ对双键上有单取代㊁二取代或三取代的双键底物都可以得到含相应取代基的双键环合产物ꎬ也是当时唯一能催化四取代双键底物合环的催化剂ꎮ该类催化剂另一显著特点是具有较高的活性和立体选择性ꎬ能形成全同立构和间同立构的聚合物ꎬ且可以催化含有醚㊁酯㊁胺㊁腈㊁膦等极性官能团的单体聚合ꎮ
但是ꎬ由于Schrock型催化剂对醛㊁酮质子化的官能团敏感ꎬ以及对空气㊁水ꎬ甚至体系中痕量的杂质敏感ꎬ不易保存ꎻ同时ꎬ其操作必须在惰性气氛
41 ㊀㊀㊀㊀㊀㊀㊀上㊀海㊀塑㊀料㊀㊀㊀㊀2021年第49卷㊀
下的无水溶剂中进行ꎬ增加了工艺复杂程度ꎬ大大限制了该类催化剂的发展和应用[13]ꎮ此后ꎬ也有科学家开发了新的以金属钼㊁钨为
催化中心的催化剂ꎮ
2012年ꎬNAYABS等[14]测试了使用
[WOCl2 ̄(hpap)]的顺式和反式异构体的混合物催化环烯烃(如四环十二烯和四环十二烯甲酸甲酯)的ROMP反应ꎬ使用三烷基铝作为促进剂ꎮ该催化剂被证明具有很高的活性(见图5)ꎬ其对空气非常敏感ꎬ必须在无氧环境下进行操作ꎬ增加了工艺的复杂性
图5㊀NAYABS等在2012年测试的催化剂㊀㊀LEHTONENA等[15]研究了具有螯合酚盐(L)的亚胺钨(VI)配合物(见图6)ꎮ[W(NPh)Cl3(L)]类型的VI配合物可以被乙基溴化镁活化ꎬ催化降冰片烯衍生物(如2 ̄降冰片烯㊁5 ̄乙烯基 ̄2 ̄降冰片烯㊁DCPD)的ROMP反应ꎮ当用乙基溴化镁处理时ꎬ这些化合物形成活性催化剂ꎮ聚合反应可以在环境气氛下进行ꎬ不需要复杂的惰性气氛技术ꎬ反应产生具有高顺式含量的聚合物
图6㊀LEHTONENA等在2008年研究的催化剂㊀㊀2020年ꎬBENEDIKTERMJ等
[16]
合成并测试
了大量以VI族金属元素为金属中心的催化剂(见图7)ꎬ其中大部分都具有高效率的催化性能ꎬ但大多数都对许多官能团十分敏感ꎬ聚合体系中的空气㊁水㊁醇等物质也会使其失效ꎬ仅有少数几种(图7中两者为代表)可以应用ꎮ这几种催化剂的稳定性和官能团耐受性已媲美目前带氮杂环卡宾(NHC)配体的钌基催化剂
图7㊀BENEDIKTERMJ等在2020年研究的催
化剂3.2㊀钌体系催化剂
自从NGUYENST等[17]在1992年提出了第一种结构明确的钌卡宾配体催化剂以来ꎬ以钌为金属中心㊁卡宾类结构为配体的催化剂因其高活性㊁高效率的催化性能和易于合成的特性ꎬ使烯烃复分解反应催化剂的研究主要集中在了钌体系催化剂上ꎮ
Grubbs催化剂是以钌为金属中心的金属卡宾
配合物ꎬ通式为[Ru(
CHR)Cl2(L)(L )](见图
8)ꎮ为了提高催化剂的反应活性ꎬGRUBBS等将分子式为[RuCl2(PPh3)2(
CH CH
CHPh)]的
配合物结构中与磷相连的苯基(Ph)换成环己基(Cy)ꎬ在1995年提出了Grubbs第一代催化剂[18]ꎬ
见图8(a)ꎮ结果提高了催化反应的活性ꎬ大大加快了反应速率[19 ̄20]ꎮ
(a)第一代催化剂
(b)第二代催化剂
图8㊀Grubbs催化剂
㊀㊀Grubbs第一代催化剂合成步骤简单㊁结构稳定不易分解㊁催化活性较高ꎬ且具有很好的官能团兼容性[21]ꎬ在质子溶剂中也很稳定[22]ꎮ通常情况下ꎬ对酰胺类底物的环化产率比较高ꎬ更明显的优点是该催化剂不受空气㊁水以及体系中杂质的影响ꎬ因此扩大了应用范围ꎮ但是ꎬ该催化剂不适用于含胺基的底物ꎬ胺基的存在会使其失去活性ꎮ
为进一步改进催化剂性能ꎬ1999年GRUBBS等在研究催化反应机理时发现ꎬ在催化反应的引发阶段存在膦配体与金属中心解离的过程ꎬ进而产生
51 第1期㊀时萌珣ꎬ等:双环戊二烯开环易位聚合反应用催化剂的研究进展㊀㊀㊀㊀㊀㊀㊀
一个具有催化活性的中间体ꎮ如果能有效地加快膦配体与金属中心的解离速率ꎬ则该催化剂的催化效率就有可能提高ꎮSCHOLLM等[23]经过进一步研究得出结论:催化反应的发生需要钌卡宾配合物分子中的一个膦配体解离生成活泼的钌中间体ꎮ为此ꎬGRUBBS研究团队将原有结构中的一个膦配体换成具有大空间位阻的NHC配体[24]ꎬ得到了Grubbs第二代催化剂[25]ꎬ见图8(b)ꎮ该催化剂延续了Grubbs第一代催化剂的特点ꎬ稳定㊁易制备ꎬ
露置在空气中储存数星期都不会分解ꎮ同时反应条件温和ꎬ具备较高的催化活性ꎬ反应时间更短ꎬ催化剂用量更少[26]ꎮ这一烯烃复分解反应催化剂因其广泛的有机官能团适用性和在空气中的稳定性ꎬ受到有机化学家的青睐ꎮ
㊀㊀Grubbs催化剂热稳定性较差ꎬ在较高的温度下易发生分解ꎮ1999年KINGSBURYJS等[27]在Grubbs催化剂的基础上开发得到了异丙氧基螯合的Hoveyda ̄Grubbs第一代催化剂ꎬ见图9(a)ꎮ随后又在2000年进一步开发得到了不含膦配体的Hoveyda ̄Grubbs第二代催化剂[28]ꎬ见图9(b)ꎮ其中在分子中引入具有较大体积的亲核性异丙氧螯络合物配体ꎬ提高了催化剂的热稳定性ꎬ并且在催化反应时有较高的引发速率ꎮ在催化反应中ꎬ尤其是Hoveyda ̄Grubbs第二代催化剂ꎬ在室温条件下反应不到2h就可以获得88%的收率[29]
ꎮ(a)
第一代催化剂
(b)第二代催化剂
图9㊀Hoveyda ̄Grubbs催化剂
㊀㊀第一代和第二代的Hoveyda ̄Grubbs催化剂分
别由相应的Grubbs催化剂衍生ꎬ原Grubbs催化剂中一个三环己基膦基团被苯环邻位的异丙氧基所替代ꎮHoveyda ̄Grubbs第一代催化剂适用于末端烯烃的关环复分解反应ꎮHoveyda ̄Grubbs第二代催化剂适用于缺电子烯烃的关环㊁开环和交叉复分解反应ꎮ
4㊀其他钌体系催化剂
由于钌体系催化剂相较于钼㊁钨类催化剂而言ꎬ对大量有机官能团㊁水分和氧气的耐受性能更佳ꎬ所以近十几年来对于烯烃复分解类反应催化剂的研究聚焦在钌卡宾配合物类催化剂上ꎮ
DCPD的ROMP反应会快速放热ꎬ但Grubbs
催化剂㊁Hoveyda ̄Grubbs催化剂中的钌卡宾配合物都具有较高的催化活性ꎬ聚合反应
在数分钟内完成ꎬ即使在室温下反应速率也较快ꎮ这使得反应不易控制ꎬ容易产生暴聚现象ꎬ影响聚合反应的稳定性ꎬ造成产物的收率降低㊁杂质增加等不良后果ꎬ导致聚合物性能降低ꎮ为此ꎬ在反应时不得不加入缓聚剂ꎬ降低反应速率以提高反应的稳定性ꎬ但这样又增加了聚合工艺的复杂性ꎬ引入了杂质ꎬ使聚合物的后处理难度增加ꎮ因此ꎬ近十几年来不少科学家研究在钌卡宾配合物上加上特定配体ꎬ延缓聚合反应的发生ꎬ或者使聚合反应在某特定条件下才能引发ꎬ提高反应的稳定性ꎮ
为增强Grubbs催化剂的稳定性ꎬSAMECJSM等[30]在2007年对其先前开发的催化剂进行了配体上的改良ꎬ在Grubbs第二代催化剂的基础上ꎬ增加了一个半稳定性的双齿配体(见图10)ꎬ抑制了
催化剂在反应过程中的分解ꎬ使副反应更少发生ꎬ
同时其催化活性能够在反应进行过程中随着温度的升高逐渐引发ꎬ减少暴聚现象ꎮ另外ꎬ该催化剂在合成过程中还避免了以Grubbs催化剂为基础进行改进时常会使用到的铊盐
图10㊀GRUBBS等在2007年开发的催化剂
61 ㊀㊀㊀㊀
㊀㊀㊀上㊀海㊀塑㊀料㊀㊀㊀㊀
2021年第49卷㊀

本文发布于:2024-09-22 12:36:02,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/95519.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:催化剂   反应   金属   催化   具有   形成
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议