柴油加氢改质装置

柴油加氢改质装置
一  工艺原理
1 加氢精制
加氢精制主要反应为加氢脱硫、加氢脱氮、加氢脱氧、烯烃与芳烃的饱和加氢,以及加氢脱金属。其典型反应如下
(1) 脱硫反应:
在加氢精制条件下石油馏分中的含硫化合物进行氢解,转化成相应的烃和H2S,从而硫杂原子被脱掉。
化学反应方程式:
二硫化物:RSSR+ 3H2 →RH + RH + 2H2S
二硫化物加氢反应转化为烃和H2S,要经过生成硫醇的中间阶段,即首先S-S键上断开,生成硫醇,再进一步加氢生成烃和硫化氢,中间生成的硫醇也能转化成硫醚。
噻吩与四氢噻吩的加氢反应:
噻吩加氢产物中观察到有中间产物丁二烯生成,并且很快加氢成丁烯,继续加氢成丁烷苯并噻吩在50-70大气压和425℃加氢生成乙基苯和硫化氢:
对多种有机含硫化物的加氢脱硫反应进行研究表明:硫醇、硫醚、二硫化物的加氢脱硫反应多在比较缓和的条件下容易进行。这些化合物首先在C-S键,S-S键发生断裂,生成的分
子碎片再与氢化合。环状含硫化物加氢脱硫较困难,需要苛刻的条件。环状含硫化物在加氢脱硫时,首先环中双键发生加氢饱和,然后再发生断环再脱去硫原子。
各种有机含硫化物在加氢脱硫反应中的反应活性,因分子结构和分子大小不同而异,按以下顺序递减:
        RSH>RSSR>RSR>噻吩
噻吩类化合物的反应活性,在工业加氢脱硫条件下,因分子大小不同而按以下顺序递减:
噻吩>苯并噻吩>二苯并噻吩>甲基取代的苯并噻吩
(2) 脱氮反应
石油馏分中的含氮化合物可分为三类:
a 脂肪胺及芳香胺类
b 吡啶、喹啉类型的碱性杂环化合物
c 吡咯、咔唑型的非碱性氮化物
在各族氮化物当中,脂肪胺类的反应能力最强,芳香胺(烷基苯胺)等较难反应。无论脂肪族胺或芳香族胺都能以环状氮化物分解的中间产物形态出现。碱性或非碱性氮化物都是比较不活泼的,特别是多环氮化物更是如此。这些杂环化合物存在于各种中间馏分,特别是重馏分,以及煤及油母页岩的干馏或抽提产物中。在石油馏分中,氮化物的含量随馏分本身分子量增大而增加。在石油馏分中,氮含量很少,一般不超过几个ppm。
在加氢精制过程中,氮化物在氢作用下转化为NH3和烃。几种含氮化物的氢解反应如下:
根据发表的有关加氢脱氮反应的热力学数据,至少对一部分氮化物来说,当温度在300-500℃范围内,需要较高的氢分压才能进行加氢脱氮反应。从热力学观点来看,吡啶的加氢脱氮比其它氮化物更困难。为了脱氮完全,一般需要比脱硫通常采用的压力范围更高的压力。
在几种杂原子化合物中,含氮化合物的加氢反应最难进行,或者说它的稳定性最高。当分子结构相似时,三种杂原子化合物的加氢稳定性依次为:
含氮化合物>含氧化合物>含硫化合物
例如:焦化柴油加氢时,当脱硫率达到90%的条件处,其脱氮率仅为40%。
(3)  烃类的加氢反应
在加氢精制条件下,烃类的加氢反应主要是不饱和烃和芳烃的加氢饱和。这些反应对改善油品的质量和性能具有重要意义。例如烯烃,特别是二稀烃的加氢可以提高油品的性;芳烃加氢可提高柴油的十六烷值。
a不饱和烃的加氢饱和反应。
直馏馏分中,一般不含有不饱和烃,但二次加工产品如催化柴油、焦化柴油中,则含有大量的不饱和烃,这些不饱和烃在加氢精制条件下很容易饱和,代表性反应如下:
值得注意的是稀烃饱和反应是一个放热反应,对不饱和烃含量较高的原料油(焦化汽、柴油)加氢,要注意控制床层温度,防止超温,加氢反应器一般都设有冷氢盘,可以通过注入冷氢来控制温升。
b芳烃的加氢饱和反应。
加氢原料油中的芳烃加氢,主要是稠环芳烃(萘系)的加氢。
萘:       
 
提高反应温度,芳烃加氢转化率下降;提高反应压力,芳烃加氢转化率增大。芳烃加氢是逐环进行的,芳烃第一环的加氢饱和较容易,随着加氢深度增加,加氢难度逐环增加。
(4)  含氧化合物的氢解反应
石油和石油产品中含氧化物的含量很少。原油中有环烷酸、脂肪酸、酯和醚、酚等。在蒸馏过程中这些化合物都发生部分分解而转入各馏分中。在石油馏分中经常遇到的含氧化合物是环烷酸。
各种含氧化合物的氢解反应:
(5) 脱金属反应
在重质石油馏分和渣油脱沥青油中,含有金属镍和矾,它们是以卟啉化合物状态存在的,在较高的氢压下,这些大分子进行一定程度的加氢和氢解,在催化剂表面上形成镍或矾沉积。一般来说,以镍为基础的化合物,反应活性比矾络合物要差一些,后者大部分沉积在催化剂的外表面,而镍更多地穿入到颗粒内部。
2 改质反应
十六烷值是柴油燃烧性能的重要指标。柴油馏分中,链烷烃的十六烷值最高,环烷烃次之,芳香烃的十六烷值最低。同类烃中,同碳数异构程度低的烃类化合物具有较高的十六烷值,芳环数多的烃类具有较低的十六烷值。因此,环状烃含量低,链状烃含量多的柴油具有较高的十六烷值。
催化柴油(LCO)中双环和三环芳烃,在MCI过程中,双环以上的芳烃只进行芳环饱和和环烷开环,其分子碳数不变。由于双环和三环芳烃转化为烷基苯,柴油中的高十六烷值组分增加,故柴油的十六烷值可得到较大幅度的提高。
降凝反应
临氢降凝是典型的选择形催化裂化反应,裂解反应在质子酸中心上进行,遵循正碳离子反应机理;临氢降凝催化剂以ZSM-5沸石为主体,该沸石是由两个交叉的孔道系统组成,即直线型孔道和之字形孔道。直线孔口为0.53nm×0.56nm的椭圆,由于受沸石特殊孔道的限制,只允许分子直径小于0.55nm的链烷烃、带短侧链烷烃和带长侧链的环烷烃等高凝点组分选择性地裂解成小分子,从而降低油品的凝固点,其余的大分子异构烷烃、环烷烃、芳烃因不能进入孔道内从而不发生反应。柴油馏分只有长而窄的石蜡分子才能进入沸石的微孔中被裂化,因此临氢降凝工艺也称为催化脱蜡工艺。
4影响加氢过程的因素
影响石油馏分加氢过程的主要因素有:反应压力、反应温度、原料的性质和催化剂等。
4.1反应压力
反应压力的影响是通过氢分压来体现的。系统中的氢分压决定于操作压力、氢油比、循环氢纯度以及原料的汽化率。对于含硫化合物的加氢脱硫和烯烃的加氢饱和反应在压力不太
高时就有较高的平衡转化率。
4. 2 反应温度

本文发布于:2024-09-22 07:23:49,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/94214.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:加氢   反应   化合物   柴油   芳烃   馏分   脱硫
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议