无刷直流电动机与永磁同步电动机的结构和性能比较

无刷直流动机与永磁同步电动机的结构和性能比较
1.在电动机结构与设计方面
这两种电动机的基本结构相同,有永磁转子和与交流电动机类似的定子结构。但永磁同步电动机要求有一个正弦的反电动势波形,所以在设计上有不同的考虑。它的转子设计努力获得正弦的气隙磁通密度分布波形。而无刷直流电机需要有梯形反电动势波,所以转子通常按等气隙磁通密度设计。绕组设计方面进行同样目的的配合。此外,BLDC控制希望有一个低电感的绕组,减低负载时引起的转速下降,所以通常采用磁片表贴式转子结构。内置式永磁(IPM)转子电动机不太适合无刷直流电动机控制,因为它的电感偏高。IPM结构常常用于永磁同步电动机,和表面安装转子结构相比,可使电动机增加约15%的转矩
2.转矩波动
两种电动机性能最引人关注的是在转矩平稳性上的差异。运行时的转矩波动由许多不同因素造成,首先是齿槽转矩的存在。已研究出多种卓有成效的齿槽转矩最小化设计措施。例如定子斜槽或转子磁极斜极可使齿槽转矩降低到额定转矩的1%~2%以下。原则上,永磁同步电动机和无刷直流电动机的齿槽转矩没有太大区别。
其他原因的转矩波动本质上是独立于齿槽转矩的,没有齿槽转矩时也可能存在。如前所述,由于永磁同步电动机和无刷直流电动机相电流波形的不同,为了产生恒定转矩,永磁同步电动机需要正弦波电流,而无刷直流电动机需要矩形波电流。但是,永磁同步电动机需要的正弦波电流是可能实现的,而无刷直流电动机需要的矩形波电流是难以做到的。因为无刷直流电动机绕组存在一定的电感,它妨碍了电流的快速变化。无刷直流电动机的实际电流上升需要经历一段时间,电流从其最大值回到零也需要一定的时间。因此,在绕组换相过程中,输入到无刷直流电动机的相电流是接近梯形的而不是矩形的。每相反电动势梯形波平顶部分的宽度很难达到120°。正是这种偏离导致无刷直流电机存在换相转矩波动。在永磁同步电动机中驱动器换相转矩波动几乎是没有的,它的转矩纹波主要是电流纹波造成的。
在高速运行时,这些转矩纹波影响将由转子的惯性过滤去掉,但在低速运行时,它们严重影响系统的性能,特别是在位置伺服系统的准确性和重复性方面的性能会恶化。
应当指出,除了电流波形偏离期望的矩形外,实际电流在参考值附近存在高频振荡,它取决于滞环电流控制器滞带的大小或三角波比较控制器的开关频率。这种高频电流振荡的影
响是产生高频转矩振荡,其幅度将低于由电流换相所产生的转矩波动。这种高频转矩振荡也存在于永磁同步电动机中。实际上,这些转矩振荡较小和频率足够高,它们很容易由转子的惯性而衰减。不过,由相电流换相产生的转矩波动远远大于电流控制器产生的这种高频转矩振荡。
3.功率密度和转矩转动惯量比
在一些像机器人技术和航空航天器高性能应用中,希望规定输出功率的电动机有尽可能小的体积和重量,即希望有较高的功率密度。功率密度受限于电动机的散热性能,而这又取决于定子表面积。在永磁电动机中,最主要的损耗是定子的铜损耗、铁心的涡流和磁滞损耗,转子损耗假设可忽略不计。因此,对于给定机壳大小,有低损耗的电动机将有高的功率密度。
假设永磁同步电机和无刷直流电动机的定子铁心涡流和磁滞损耗是相同的。这样,它们的功率密度的比较取决于铜损耗。下面对比两种电动机输出功率是基于铜损耗相等条件。在永磁同步电动机中,采用滞环比较器或PWM电流控制器得到低谐波含量的正弦波电流,绕组铜损耗基本上是由电流的基波部分决定的。设每相峰值电流是Ip1,电流有效值(RMS)是,那么三相绕组铜损耗是,其中Ra是相电阻。
在无刷直流电动机中,它的电流是梯形波,设每相峰值电流是Ip2,由于三相六状态总只是两相通电工作,绕组铜损耗是,其中Ra是相电阻。由铜损耗相等的设定条件,即
于是可得到
由上面分析,在无刷直流电机中,每相反电动势为Ep2,转速为Ω,电磁转矩表示为Tebl=2Ep2Ip2/Ω;在永磁同步电动机中,每相反电动势为Ep1,转速为Ω,电磁转矩表示为Tepm=1.5Ep1Ip1/Ω。由于反电动势幅值是由直流母线电压决定的,取Ep1=Ep2,可得到
转换为两者输出电磁功率之比也是1.15。
上述粗略分析结果显示,无刷直流电动机比相同机壳尺寸的永磁同步电动机能够多提供15%的功率。即其功率密度约大15%。实际上,考虑到无刷直流电动机的铁损耗比永磁同步电动机要稍大些,输出功率的增加达不到15%。
当电动机用于要求快速响应的伺服系统时,系统期望电动机有较小的转矩转动惯量比。因为无刷直流电动机的功率输出可能增加15%,如果它们具有相同的额定速度,也就有可能获得15%的电磁转矩的增加。当它们的转子转动惯量相等时,则无刷直流电动机的转矩转动惯量比可以高出15%。
如果两种电动机都是在恒转矩模式下运行,无刷直流电动机比永磁同步电动机的每单位峰值电流产生的转矩要高。由于这个原因,当使用场合对重量或空间有严格限制时,无刷直流电动机应当是首选。
4.在传感器方面
在图2-2和图2-3分别给出两种不同电流驱动模式的速度伺服系统框图。
图2-2 方波驱动(BLDC方式)的速度伺服系统典型原理框图
图2-3 正弦波驱动(BLAC方式)的速度伺服系统典型原理框图
两种电动机运行均需要转子位置反馈信息,永磁同步电动机正常运行要求正弦波电流,无刷直流电动机要求的电流是矩形波,这导致它们在转子位置传感器选择上的很大差异。无刷直流电动机中的矩形电流导通模式只需要检测电流换相点。因此,只需要每60°电角度检
测转子位置一次。此外,在任何时间只有两相通电,它只需要低分辨率转子位置传感器,例如霍尔传感器,它的结构简单,成本较低。
但是,在永磁同步电动机每相电流需要正弦波,所有三相都同时通电,连续转子位置检测是必需的。它需要采用高分辨率转子位置传感器,常见的是10bit以上的绝对型光电编码器,或如图2-3所示的解算器(旋转变压器)与R/D转换器(旋转变压器/数字转换器)的组合,成本比三个霍尔集成电路要高得多。
如果在位置伺服系统中,角位置编码器既可用作位置反馈,同时也可以用于换相的目的,这样无刷直流电动机转子位置传感器的简单并没有带来什么好处。然而,对于速度伺服系统,永磁同步电动机还需要高分辨率的转子位置传感器,而在无刷直流电动机中,有低分辨率传感器就足够了。如果换相引起的转矩波动是可以接受的话,在速度伺服系统采用无刷直流电动机显得更为合适。
对于三相电动机,为了控制绕组电流,需要得到三相电流信息。通常采用两个电流传感器就足够了,因为三相电流之和必须等于零。因此,第三相电流总是可以由其他两相电流推导出。在一些简易型无刷直流电动机驱动器中,为节约成本,只采用一个电流传感器,检
测的是直流母线的电流,通过计算可以得到三相绕组的电流值。
5.运行速度范围
永磁同步电动机能够比有相同参数的无刷直流电动机有更高的转速,这是由于无刷直流电动机当其反电动势等于直流母线电压时已经达到最高转速。而永磁同步电动机可实施弱磁控制,所以速度范围更宽。
6.对逆变器容量的要求
如果逆变器的连续额定电流为Ip,并假设控制最大反电动势为Ep。当驱动永磁同步电动机时,最大可能输出功率是
如果这个逆变器也用来驱动无刷直流电动机,它的输出功率将是2EpIp,两者之比为4/3=1.33。因此,对于给定的连续电流和电压的逆变器,理论上可以驱动更大功率的无刷
直流电动机,其额定功率比永磁同步电动机可能提高33%。但由于无刷直流电动机铁损耗的增加将减少这个百分数。反过来说,当被驱动的两种电动机输出功率相同时,驱动无刷直流电动机的逆变器容量将可减小33%。
综上所述,正弦波驱动是一种高性能的控制方式,电流是连续的,理论上可获得与转角无关的均匀输出转矩,良好设计的系统可做到3%以下的低纹波转矩。因此它有优良的低速平稳性,同时也大大改善了中高速大转矩的特性,铁心中附加损耗较小。从控制角度说,可在一定范围内调整相电流和相电动势相位,实现弱磁控制,拓宽高速范围。正弦波交流伺服电动机具有较高的控制精度。其控制精度是由电动机同安装于轴上的位置传感器及解码电路来决定的。对于采用标准的2500线编码器的电动机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带无刷旋转变压器的正弦波交流伺服电动机的控制精度,由于位置信号是连接的正弦量,原则上位置分辨率由解码芯片的位数决定。如果解码芯片为14bit的R/D转换器(旋转变压器/数字转换器),驱动器每接收214=16384个脉冲,电动机转一圈,即其脉冲当量为360°/16384=0.02197″。
正弦波交流伺服电动机低速运转平稳。正弦波交流伺服电动机由矢量控制技术产生三相正
弦波交流电流。三相正弦波交流电流与三相绕组中的三相正弦波反电动势产生光滑平稳的电磁转矩,使得正弦波交流伺服电动机具有宽广的调速范围,例如从30min转一周到3000r/min。
但是,为满足正弦波驱动要求,伺服电动机在磁场正弦分布上有较严格的要求,甚至定子绕组需要采用专门设计,这样就会增加工艺复杂性;必须使用高分辨率绝对型转子位置传感器,驱动器中的电流环结构更加复杂,都使得正弦波驱动的交流伺服系统成本更高。
对比相对简单的梯形波BLDC电动机控制,PMSM的复杂正弦波形控制算法使控制器开发成本增高,需要一个更加强大(更昂贵)的处理器。最近IR、Microchip、Freescale、STMicro等国际知名厂商相继推出电动机控制开发平台,该算法已经开发,有望在不久的将来以较低成本就能够使用于平稳转矩、低噪声、节能的永磁同步电动机中。
近年出现了低成本正弦波驱动技术方案,值得关注,详见第14章。
实际上,上述两种驱动模式的电动机和驱动器都在速度伺服和位置伺服系统中得到满意的应用。图2-2和图2-3分别给出方波驱动和正弦波驱动两种驱动模式速度伺服系统典型原理框图。
参考文献[1]研究了同一台永磁无刷直流电机在两种驱动方式下性能的对比,电动机的参数:槽数为24,极数为4,转动惯量为4.985×10-6kg·m2,绕组自感为0.411mH,绕组互感为0.375mH,绕组电阻为0.4317Ω,反电动势系数为0.03862V·s/rad。直流电源电压设为27V,正弦波驱动时三角波载波信号频率为3000Hz,负载转矩为TL=0.37N·m。通过仿真结果得到:在电枢电流有效值相等的条件下,方波驱动的电磁转矩大于正弦波驱动的电磁转矩,方波驱动的平均电磁转矩是正弦波驱动的平均电磁转矩的1.176倍;方波驱动的稳态电磁转矩脉动系数为10.5%,正弦波驱动的稳态电磁转矩脉动系数为3.37%;两种驱动方式在同样的负载情况下,方波驱动时电动机的转速(4600r/min)高于正弦波驱动(3960r/min),即方波驱动电动机输出功率更大。因此认为,在对电动机运行平稳性要求不高、对出力要求高时,宜采用控制简单的方波驱动,若对电动机有高的稳速精度要求,宜采用控制复杂的正弦波驱动。

本文发布于:2024-09-23 12:30:17,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/92742.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电动机   电流   转矩   无刷   动机   直流电
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议