Keil5HAL库操作flash存储数据(stm32f103c6t6),实现断电保存数据

Keil5HAL库操作flash存储数据(stm32f103c6t6),实现断电保存数据想实现断电保存少量的⼀些数据,stm32内部flash 排除运⾏程序占⽤空间后,还有剩余空间,可以把这些空间利⽤起来。
如果只是单纯想存、取数据,那就只关注页、每页⼤⼩、每页开始地址就可以了。
stm32f103c6t6 共 32 页,每页 1kb(1024字节),也就是说,有32kb的断电保存空间,减去运⾏程序占⽤空间,剩下的,都是可操作空间。
涉及到基本感念:
8bit = 1b(byte 字节), 1024kb = 1Mb
uint8_t类型占⽤ 8bit(1b)
uint16_t类型占⽤ 16bit(2b)
uint32_t类型占⽤ 32bit(4b)
uint64_t类型占⽤ 64bit(8b)
第⼀页开始地址: 0x8000000  结束地址: 0x80003FF
此处可以打开计算器试着计算⼀下:
获取运⾏程序实际⼤⼩:
在keil5中,执⾏rebuild, 完成后在结果中到:
把这⼏个值加起来,除1024(值的单位是b(byte)): 4244 + 292 + 16 + 1128 = 5680 ;  5680 / 1024 = 5.54kb,相当于程序占⽤了5页半,就当六页算。
在操作flash存储数据时,为防⽌影响到程序代码,可以隔⼀页,写数据。从第七页开始存储,(不⼀定必须隔⼀页,只是个⼈习惯)
0x8000000 + (1024 * 6) = 0x8001800
此处乘 6不是乘7,是因为页是从0开始的,0页地址是0x8000000,1页就是 0x8000000 + (1024) ,2页就是 0x8000000 + (1024 * 2).....
⽐如存储⼀个uint16_t类型数据,因为uint16_t占2字节,所以,0x8001800 + 2 = 0x8001802,这个变量内容就存储在:0x8001801和0x8001802两个地址中。
以下是我写的测试代码⽅法,测试存取数据操作:
#define PAGE_START_ADDRESS 0x8000000
//paramSizeKb 程序⼤⼩
//data 准备写⼊数据
//len ⼤⼩
bool flashWriteData(int paramSizeKb, uint64_t data[], size_t len) {
HAL_FLASH_Unlock();//解锁flash
//准备擦除整页,写⼊前需要擦除
FLASH_EraseInitTypeDef f;
f.TypeErase = FLASH_TYPEERASE_PAGES;//页擦除
f.PageAddress = PAGE_START_ADDRESS + (1024 * paramSizeKb);//擦除页地址
f.NbPages = 1;//擦除1页
uint32_t PageError = 0;
HAL_FLASHEx_Erase(&f, &PageError);//擦除PageError == 0xFFFFFFFF表⽰成功
if(PageError != 0xFFFFFFFF) {
return false;
}
//开始写数据
uint32_t startAddressIndex = PAGE_START_ADDRESS + (1024 * paramSizeKb);
//startAddressIndex += 8,写⼊位置,每次+8是因为存储的类型是uint64_t,占⽤64bit,8字节
for(int i = 0 ; i < len;i ++ , startAddressIndex += 8) {
//写⼊数据
HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, startAddressIndex, data[i]);
}
//重新上锁
HAL_FLASH_Lock();
return true;
}
//读取数据
//paramSizeKb 程序⼤⼩
//data 读⼊数据
//len 读⼊数据长度
void flashReadData(int paramSizeKb, uint8_t *data, size_t len) {
uint32_t startAddressIndex = PAGE_START_ADDRESS + (1024 * paramSizeKb);
for(int i = 0; i < len; i++, startAddressIndex += 8){
data[i] = *(__IO uint32_t*)(startAddressIndex);
}
}
在烧写程序测试前,可以先⽤keil5 仿真功能测试⼀下,在测试时需要注意打开指定地址的读写访问操作:
打开运⾏指定地址读写访问:
⾸先开启debug调试: Debug -> Start/Stop Debug Session
进⼊debug调试后,进⼊Debug -> : Map Range处输⼊允许读写开始地址,结束地址,逗号分割; 勾选Read Write复选框,点击Map Range 按钮添加允许读写操作区域。
然后,就可以点击(Run F5)继续调试程序了。
完整测试⽂件内容main.c:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file          : main.c
* @brief          : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
*                        /licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/
* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usart.h"
#include "gpio.h"
#include "stdbool.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/
* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/
* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
//#define PAGE_START_ADDRESS 0x8000000
#define PAGE_START_ADDRESS 0x8008800
//paramSizeKb 程序⼤⼩
//data 准备写⼊数据
//len ⼤⼩
bool flashWriteData(int paramSizeKb, uint64_t data[], size_t len) {
HAL_FLASH_Unlock();//解锁flash
//准备擦除整页,写⼊前需要擦除
FLASH_EraseInitTypeDef f;
f.TypeErase = FLASH_TYPEERASE_PAGES;//页擦除
f.PageAddress = PAGE_START_ADDRESS + (1024 * paramSizeKb);//擦除页地址
f.NbPages = 1;//擦除1页
uint32_t PageError = 0;
HAL_FLASHEx_Erase(&f, &PageError);//擦除PageError == 0xFFFFFFFF表⽰成功
if(PageError != 0xFFFFFFFF) {
return false;
}
/
/开始写数据
uint32_t startAddressIndex = PAGE_START_ADDRESS + (1024 * paramSizeKb);
//startAddressIndex += 8,写⼊位置,每次+8是因为存储的类型是uint64_t,占⽤64bit,8字节
for(int i = 0 ; i < len;i ++ , startAddressIndex += 8) {
//写⼊数据
HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, startAddressIndex, data[i]);
}
//重新上锁
HAL_FLASH_Lock();
return true;
}
/
/读取数据
//paramSizeKb 程序⼤⼩
//data 读⼊数据
//len 读⼊数据长度
void flashReadData(int paramSizeKb, uint64_t *data, size_t len) {
uint32_t startAddressIndex = PAGE_START_ADDRESS + (1024 * paramSizeKb);
for(int i = 0; i < len; i++, startAddressIndex += 8){
data[i] = *(__IO uint32_t*)(startAddressIndex);
}
}
/**
* @brief  The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/
* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Infinite loop */
/
* USER CODE BEGIN WHILE */
//程序⼤⼩ 6k, rebuild 后看Program Size: Code=4124 RO-data=292 RW-data=16 ZI-data=1128 ,把这⼏个数字(byte)加起来 / 1024    //每页1k
while (1)
{
//HAL_UART_Transmit(&huart1, (uint8_t[]){0x00, 0x00, 0x00}, 3, 1000);
/* USER CODE END WHILE */
uint8_t data[3];
if (HAL_UART_Receive(&huart1, data, 3, 100) == HAL_OK) {
//0xAA or 0xBB
uint8_t cmd = 0xFF;
for(int i = 0; i < 3; i++) {
if(data[i] != data[0]) {
HAL_UART_Transmit(&huart1, data, 3, 1000);
break;
}
if (i + 1 == 3) {
cmd = data[0];
}
}
if(cmd == 0xAA) {
uint64_t writeData[5] = {0xAA, 0xBB, 0xCC, 0xDD, 0xEE};
if(flashWriteData(6, writeData, 5)) {
HAL_UART_Transmit(&huart1, (uint8_t[]){0xAA, 0xAA, 0xAA}, 3, 1000);
}else{
HAL_UART_Transmit(&huart1, (uint8_t[]){0xFF, 0xFF, 0xFF}, 3, 1000);
}
}
if(cmd == 0xBB) {
uint64_t readData[5];
flashReadData(6, readData, 5);
//HAL_UART_Transmit(&huart1, (uint8_t[]){0xBB, 0xBB, 0xBB}, 3, 1000);
HAL_UART_Transmit(&huart1, (uint8_t[]){0xFF, 0xFF, 0xFF}, 5, 1000);
}
if(cmd != 0xAA && cmd != 0xBB) {
HAL_UART_Transmit(&huart1, (uint8_t[]){0xFF, 0xFF, 0xFF}, 3, 1000);
}
}
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief  This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef  USE_FULL_ASSERT
/**
* @brief  Reports the name of the source file and the source line number
*        where the assert_param error has occurred.
* @param  file: pointer to the source file name
* @param  line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
此处代码通过串⼝发送0xAA 0xAA 0xAA,设置flash存储 0xAA, 0xBB, 0xCC, 0xDD, 0xEE;发送0xBB 0xBB 0xBB 读取存⼊的内容。刚开始接触STM32相关硬件,如果有误导的地⽅,恳请⼀定指出!防⽌误让其他⼈⾛弯路。

本文发布于:2024-09-20 11:33:05,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/90096.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:flash基础知识
标签:地址   开始   数据   空间   程序   测试   打开   断电
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议