一种改性聚丙烯电力导管及其制备方法与流程



1.本发明涉及电力导管技术领域,具体涉及一种改性聚丙烯电力导管及其制备方法。


背景技术:



2.聚丙烯树脂是四大通用型热塑性树脂之一,通常为无、无臭、无毒、半透明状固体物质。聚丙烯作为一种热塑性合成树脂,具有耐化学性、耐热性、电绝缘性好的优点,同时具备高强度机械性能和良好的高耐磨加工性能等,这使得聚丙烯自问世以来,便迅速在机械、汽车、电子电器、建筑、纺织、包装、农林渔业和食品工业等众多领域得到广泛应用,尤其是用作制备电力保护管道的原材料,目前,聚丙烯已经成为市场上最常见的电力管材之一。
3.但是,聚丙烯还存在韧性差,耐候性不佳、在低温下的抗冲击性能差、抗压能力低,以及在电、磁、光、热、燃烧等方面的功能性与实际需求之间存在较大差距,对聚丙烯加以改性,已经成为当前塑料加工发展最为活跃的,取得成果最为丰盛的领域。
4.目前,已经出现了共聚改性、交联改性、接枝改性、添加成核剂等使聚丙烯高分子组分与大分子结构或晶体构型发生改变而提高其机械性能、耐热性、耐老化性等性能的化学改性法;以及在混合、混炼过程中向聚丙烯基体中添加有机或无机助剂等得到性能优异的聚丙烯复合材料的物理改性法,如填充改性、共混改性、增强改性等。但在对聚丙烯进行改性中我们也发现:
5.第一,通常聚丙烯的强度,尤其是抗压强度和韧性反相关,随着聚丙烯强度的升高、韧性逐渐降低;
6.第二,聚丙烯的阻燃效果与阻燃剂的添加量息息有关,阻燃剂的添加量过低,如低于5%时,无法有效起到阻燃,但若阻燃剂的添加量过高,如高于10%时,聚丙烯的强度又将受到明显影响,同时韧性也会降低;
7.但是,对于聚丙烯电力导管而言,其应用环境多种多样,使用方式灵活多变,如在使用过程中,聚丙烯电力导管的上方可能会设置相当重量的物品或设备,这要求其具备良好的机械强度;再比如在安装过程中,需要对聚丙烯电力导管进行中大半径的弯曲,这要求其具备良好的韧性;此外,对于电力设施,还要具备良好的阻燃能力,以防电力事故的发生,因此,需要对聚丙烯电力导管的强度、韧性和阻燃性能进行综合改良,以满足使用需求、提高使用安全性。


技术实现要素:



8.本发明设计出一种改性聚丙烯电力导管及其制备方法,以改善现有聚丙烯电力导管存在的强度低、韧性差以及阻燃性能欠佳的问题。
9.为解决上述问题,本发明公开了一种改性聚丙烯电力导管,其包括支撑层,其为改性聚丙烯管;
10.功能层,其为包覆在所述支撑层外围的多层管状结构;
11.所述功能层包括自内而外、依次设置的:
12.外层,其为改性聚丙烯与第一增强纤维复合而成的管状发泡体;
13.中间层,其为改性聚丙烯与第二增强纤维复合而成的管状发泡体;
14.内层,其由相变材料层、多孔聚丙烯膜层和增强网复合而成,在所述多孔聚丙烯膜层中设置阻燃剂。
15.进一步的,所述支撑层包括如下重量份的原料:
[0016][0017]
所述外层包括如下重量份的原料:
[0018][0019]
其中,所述第一增强纤维为弹性纤维和刚性纤维的混合物;
[0020]
所述中间层包括如下重量份的原料:
[0021][0022]
其中,所述第二增强纤维为刚性纤维。
[0023]
进一步的,在所述功能层中,所述外层、中间层和内层之间的厚度比为1:(3~10):(0.2~0.5);
[0024]
所述外层的孔隙率为80~87%,所述中间层的孔隙率为50~65%;
[0025]
所述外层(中的气孔平均直径为6~10um,所述中间层中的气孔平均直径为3~5um。
[0026]
进一步的,所述多孔聚丙烯膜层包括如下重量份的原料:
[0027][0028]
进一步的,所述多孔聚丙烯膜层的制备过程如下:
[0029]
s1,首先将无规共聚聚丙烯和β成核剂混合均匀,并通过挤出造粒制得母粒;
[0030]
s2,将所述母粒、孔径调节剂、助剂混合均匀后,在180~230℃下熔融挤出,得到熔体;
[0031]
s3,将所述熔体依次通过流延辊、退火辊、胶辊及收卷辊后,得到膜片;
[0032]
s4,将所述膜片经拉伸和热定型后,得到多孔聚丙烯基膜;
[0033]
s5,将多孔介质与阻燃剂材料在0.3~1mpa的压力下,搅拌、混合均匀后,得阻燃颗粒;
[0034]
s6,将阻燃颗粒均匀涂覆在所述多孔聚丙烯基膜上;
[0035]
s7,通过压辊将负载了阻燃剂颗粒的多孔介质压入所述多孔聚丙烯基膜中,得多
孔聚丙烯膜层。
[0036]
进一步的,所述增强网包括第一网格结构和第二网格结构,所述第一网格结构为直径<10um的细纤维交叉而成的网格状结构;所述第二网格结构为直径>100um的粗纤维交叉而成的网格状结构;
[0037]
将所述增强网设置在所述支撑层外后,所述第一网格结构位于靠近所述中间层的一侧,所述第二网格结构位于靠近所述支撑层的一侧;
[0038]
将网格状增强网中的45
°
角平分线记为直线l,所述直线l与所述支撑层的中心轴线平行设置。
[0039]
进一步的,在所述内层中形成多个毗邻的阻燃微区,所述阻燃微区为由所述粗纤维围成的矩形区域,在所述阻燃微区的外侧填充相变储能材料,内侧填充阻阻燃剂,相变储能材料和阻燃剂分别通过承载其的基体材质和增强网进行固定。
[0040]
进一步的,所述相变材料层包括如下重量份的原料:
[0041][0042]
进一步的,所述相变材料层的制备方法如下:
[0043]
z1,通过水浴加热,将相变储能材料加热至70~90℃,搅拌、使其完全熔融;
[0044]
z2,将高岭土加入到上述步骤z2得到的熔融体系中,搅拌均匀后,将其在70~90℃进行真空吸附8~10h,之后,自然冷却至室温,得复合相变储能材料;
[0045]
z3,将复合相变储能材料加入的壳聚糖溶液中,搅拌均匀后,加入交联剂和含有氨基活性官能基团的有机小分子,持续搅拌0.5~1h后,得相变材料混合体系,备用;
[0046]
z4,将相变材料混合体系涂覆在所述增强网中第一网格结构所在一侧,之后将其在-25~-5℃下冷冻干燥后,得相变材料层。
[0047]
一种改性聚丙烯电力导管的制备方法,所述方法用于制备上述的改性聚丙烯电力导管,所述方法包括步骤:
[0048]
p1,制备支撑层:
[0049]
(a1)混料:按照支撑层的厚度和重量配比分别称取各原料,并将各原料搅拌至混合均匀;
[0050]
(a2)造粒:将混合均匀后的物料加入至挤出机中,挤出、造粒,得支撑层的粒料;
[0051]
(a3)挤出支撑层:将所得的粒料加入至双螺杆或单螺杆挤出机中,挤出成型,得支撑层;
[0052]
p2,制备内层:
[0053]
(b1)涂覆热敏发泡胶:将热敏发泡胶通过挤出机环状挤出涂覆的方式涂覆至支撑层的外表面上;
[0054]
(b2)设置多孔聚丙烯膜层:将预制完成的多孔聚丙烯膜层包裹并压合在所述支撑层的外表面,使其通过热敏发泡胶粘附在支撑层的外表面上;
[0055]
(b3)设置增强网,将增强网通过热压固定在所述多孔聚丙烯膜层上,热压时的压力设置以所述增强网中的第二网格结构能够部分插入所述多孔聚丙烯膜层内、且第一网格结构和部分第二网格结构裸露在所述多孔聚丙烯膜层外为宜;
[0056]
(b4)设置相变材料层:将预制完成的相变材料混合体系涂覆在所述增强网中第一网格结构所在的一侧,之后将其在-25~-5℃下冷冻干燥后,得相变材料层;
[0057]
p3,制备中间层和外层:
[0058]
(c1)混料:按照中间层的厚度和原料重量份比称取中间层的原料,并将其搅拌、混匀,得中间层的混合料;按照外层的厚度和重量份比称取外层的原料,并将其搅拌、混匀,得外层的混合料;
[0059]
(c2)分别将中间层的混合料与外层的混合料加入双螺杆挤出机中,将中间层和外层的管材挤出至支撑层和内层外围,得到所述电力导管。
[0060]
本技术所述的改性聚丙烯电力导管及其制备方法具有以下优点:
[0061]
第一,采用无规共聚聚丙烯和均聚聚丙烯复配的方式,通过增加基材中无规共聚聚丙烯的含量,提高了所述支撑层的冲击性能,能够确保所述支撑层具备良好的强度基础和低温韧性,同时通过加入β成核剂和丁二烯橡胶来进一步改善聚丙烯管材的强度和韧性;
[0062]
第二,在所述外层和中间层中,进一步加大所述无规共聚聚丙烯相对于所述均聚聚丙烯的添加比例,提高所述外层和中间层材料的冲击性能,使其韧性好、不易断裂;
[0063]
第三,本技术所述改性聚丙烯电力导管中的内层、中间层和外层均以聚丙烯为基体材料,使得各层的晶态一致,可消除各层间由于相界面导致的空间电荷聚集、进而导致的层间力降低的问题;
[0064]
第四,在本技术所述改性聚丙烯电力导管中,外层较中间层而言,孔隙率更高、气孔直径更大,因此更加柔软、易变形,且中间层的厚度远大于外层的厚度,因此,当遇到相对较小的变形力时,外层材料将首先受到外部压力的影响而产生形变;当遇到较大的变形力时,所述电力导管主要依靠中间层的形变来抵抗载荷的作用;同时,外层和中间层的强度小于支撑层的强度,韧性优于支撑层,因此,所述电力导管主要依靠支撑层来提供较高的强度,尤其是抗压强度;最终使得所述电力导管在不同的受力情况下,呈现出不同的力学状态,其力学表现是外层、中间层、内层和支撑层等力学性能的综合体现,不再是单一材料的单一性能,能够根据受力状态进行对于调控,使得所述电力导管整体对外表现出良好的强度和韧性;
[0065]
第五,相变储能材料通过高岭土进行负载,之后通过壳聚糖交联形成的三维网状结构进行包裹,不易产生大幅位移和泄露,不易对与其相邻的中间层和多孔聚丙烯膜层产生影响;
[0066]
第六,阻燃材料通过物理压合的方式填充在多孔聚丙烯膜层中,不与其他层产生化学交联或反应,不会对支撑层、中间层和外层的强度和韧性产生明显影响;
[0067]
第七,阻燃材料通过多孔聚丙烯膜层进行负载的方式,能够将阻燃材料集中在极薄的多孔聚丙烯膜层中,实现阻燃材料的层状富集,在支撑层和功能层之间形成了一个高强度的阻燃介质密集层,避免了阻燃材料在电力导管中的均匀分散分布,一方面,避免了阻
燃材料对电力导管整体性质的不利影响;另一方面,提高了阻燃材料的阻燃效果,降低了阻燃材料的用量;
[0068]
第八,第一增强纤维、第二增强纤维和增强网的使用能够提高各层的强度和韧性,尤其是增强网的使用还能够将相变材料层和多孔聚丙烯膜层有机地复合起来,形成多个毗邻的阻燃微区,将所述相变材料层和多孔聚丙烯膜层网格化、微区化,使得其中的相变材料和阻燃剂附着稳定、不易泄露;
[0069]
总之,本技术所述的改性聚丙烯电力导管及其制备方法具有强度高、韧性好以及阻燃性能佳的优点。
附图说明
[0070]
图1为本发明所述改性聚丙烯电力导管横截面的结构示意图;
[0071]
图2为本发明所述功能层横截面的结构示意图;
[0072]
图3为本发明所述增强网中第一网格结构的立体结构示意图;
[0073]
图4为本发明所述增强网中第一网格结构与第二网格结构复合后的立体结构示意图;
[0074]
图5为本发明所述增强网的立体结构示意图;
[0075]
图6为本发明所述增强网的正视结构示意图;
[0076]
图7为图6中a-a方向的剖面结构示意图;
[0077]
图8为本发明所述阻燃微区的结构示意图。
[0078]
附图标记说明:
[0079]
1、支撑层;2、功能层;201、外层;202、中间层;203、内层;2031、粗纤维;2032、细纤维;2033、阻燃微区;2034、阻燃颗粒;2035、相变材料层;2036、多孔聚丙烯膜层。
具体实施方式
[0080]
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
[0081]
如图1~8所示,一种改性聚丙烯电力导管,其包括:
[0082]
支撑层1,其为改性聚丙烯制成的管状结构;
[0083]
功能层2,其为包覆在所述支撑层1外围的多层管状结构;
[0084]
所述功能层2包括自内而外、依次设置的:
[0085]
外层201,其为改性聚丙烯与第一增强纤维复合而成的管状发泡体;
[0086]
中间层202,其为改性聚丙烯与第二增强纤维复合而成的管状发泡体;
[0087]
内层203,其由相变材料层2035、多孔聚丙烯膜层2036和增强网复合而成,在所述多孔聚丙烯膜层2036中设置阻燃剂。
[0088]
进一步的,所述支撑层1包括如下重量份的原料:
[0089][0090]
优选的,所述无规共聚聚丙烯的熔体流动速率为0.5-8g/10min;所述均聚聚丙烯的熔体流动速率为0.3-1g/10min。通过所述无规共聚聚丙烯和均聚聚丙烯的熔体流动速率可调控其分子量,进而调控所述支撑层1的强度和韧性。
[0091]
优选的,所述β成核剂为芳香族胺类β成核剂、稀土配合物β成核剂、稠环化合物类成核剂、取代芳基磷酸酯盐类成核剂中的一种。
[0092]
本技术所述支撑层1采用无规共聚聚丙烯和均聚聚丙烯复配的方式,通过增加基材中无规共聚聚丙烯的含量,提高了所述支撑层1的冲击性能,能够确保所述支撑层1具备良好的强度基础和低温韧性。
[0093]
此外,聚丙烯的晶型对聚丙烯的性能起关键作用,通常,聚丙烯主要有α、β、γ、δ和拟六方晶型,其中α晶型的聚丙烯较β型的聚丙烯具有较高的弹性模量和屈服强度,而β晶型的聚丙烯在拉伸强度、断裂伸长率和冲击韧性方面高于前者,但是,一般熔融的聚丙烯在结晶过程中主要生成α晶型的聚丙烯,因此聚丙烯管材常存在着耐压能力低、低温脆性大的缺陷,本技术通过在制备所述支撑层1的原料中加入一定量的β成核剂来提高所述支撑层1中β晶型聚丙烯的含量,改善聚丙烯管材的强度和韧性。
[0094]
再者,丁二烯橡胶作为弹性体的加入,能够进一步改善聚丙烯管材的强度和韧性。
[0095]
进一步的,所述助剂包括如下重量份的原料:
[0096][0097]
优选的,所述抗氧剂为受阻酚类、亚磷酸酯类和硫代类抗氧剂中的一种或多种。
[0098]
优选的,所述表面改性剂为乙烯基三甲氧基硅烷、异丁基三乙氧基硅烷、3-氨基丙基三乙氧基硅烷中的一种或多种。
[0099]
优选的,所述分散剂为硬脂酸锌、聚乙烯蜡、乙烯基双硬脂酰胺中的一种或多种。
[0100]
优选的,所述增塑剂为邻苯二甲酸二辛酯、壬基偏苯三酸酯、烷基硫酸苯酯中的一种或多种。
[0101]
优选的,所述稳定剂为马来酸辛基锡、二盐基邻苯二甲酸铅、二盐基亚磷酸铅中的一种或多种。
[0102]
优选的,所述相容剂为马来酸酐接枝聚丙烯、丙烯酸接枝聚丙烯、丙烯酸酯接枝聚丙烯、丙烯酸环氧酯接枝聚丙烯中的一种或多种。
[0103]
在所述支撑层1的原料设计中:通过抗氧剂、表面改性剂、分散剂、增塑剂、稳定剂、相容剂等助剂的添加能够有效提高聚丙烯管材的稳定性、抗氧化性等,对聚丙烯管材的综合性能进行进一步改善。
[0104]
进一步的,所述外层201包括如下重量份的原料:
[0105][0106][0107]
进一步的,所述中间层202包括如下重量份的原料:
[0108][0109]
其中,所述外层201和中间层202中的助剂与前述支撑层1中的助剂相同,所述发泡剂为偶氮二甲酰胺、偶氮二异、n,n-二亚硝基五次甲基四胺、对苯磺酰肼中的一种或多种。
[0110]
在所述外层201和中间层202中,进一步加大所述无规共聚聚丙烯相对于所述均聚聚丙烯的添加比例,提高所述外层201和中间层202材料的冲击性能,使其韧性好、不易断裂。
[0111]
本技术所述改性聚丙烯电力导管中的内层203、中间层202和外层201均以聚丙烯
为基体材料,使得各层的晶态一致,可消除各层间由于相界面导致的空间电荷聚集、进而导致的层间力降低的问题。
[0112]
优选的,所述第一增强纤维的断裂伸长率>所述第二增强纤维的断裂伸长率,如此,可使得所述外层201具有较所述中间层202更大的断裂伸长能力。
[0113]
更加优选的,所述第一增强纤维为弹性纤维和刚性纤维的混合物,所述第一增强纤维中,弹性纤维的重量百分比为30%~80%,通过所述第一增强纤维的设置,能够提高所述外层201的韧性和强度。
[0114]
作为本技术的一些实施例,所述弹性纤维为尼龙纤维、聚酯纤维、氨纶纤维和芳纶纤维中的一种或多种。
[0115]
作为本技术的一些实施例,所述刚性纤维为玻璃纤维、碳纤维、金属丝等中的一种或多种。
[0116]
作为本技术的一些实施例,所述第一增强纤维为氨纶纤维和玻璃纤维按照1:1混合而成的混合物。
[0117]
进一步的,所述第二增强纤维为刚性纤维。
[0118]
更进一步的,所述第一增强纤维和第二增强纤维为长度约5~30mm的短纤维。
[0119]
进一步的,所述支撑层1与功能层2的厚度比为1:(1.6~3.5)。
[0120]
进一步的,在所述功能层2中,所述外层201、中间层202和内层203之间的厚度比为1:(3~10):(0.2~0.5)。
[0121]
更进一步的,所述外层201的孔隙率为80~87%;所述中间层202的孔隙率为50~65%。
[0122]
优选的,所述外层201中的气孔平均直径为6~10um,所述中间层202中的气孔平均直径为3~5um。
[0123]
通过将外层201和中间层202设置为上述结构,可以使得所述外层201和中间层202具备如下特点:
[0124]
第一、外层201较中间层202而言,孔隙率更高、气孔直径更大,因此,较中间层202而言,外层201的材质更加柔软、易变形;
[0125]
第二,外层201包裹在中间层202,因此,当遇到相对较小的变形力时,外层201材料将首先受到外部压力的影响而产生形变;
[0126]
第三,中间层202的厚度远大于外层201的厚度,因此,当遇到较大的变形力时,所述电力导管主要依靠中间层202的形变来抵抗载荷的作用;
[0127]
第四,外层201和中间层202的强度小于支撑层1的强度,韧性优于支撑层1,因此,所述电力导管主要依靠支撑层1来提供较高的强度,尤其是抗压强度;
[0128]
如此,使得所述电力导管在不同的受力情况下,呈现出不同的力学状态,其力学表现是外层201、中间层202、内层203和支撑层1等力学性能的综合体现,不再是单一材料的单一性能,能够根据受力状态进行对于调控,使得所述电力导管整体对外表现出良好的强度和韧性。
[0129]
进一步的,所述多孔聚丙烯膜层2036包括如下重量份的原料:
[0130][0131]
其中,所述多孔聚丙烯膜层2036中的助剂与前述支撑层1中的助剂相同。
[0132]
其中,所述孔径调节剂为苯甲酸盐、烷基羧酸盐中的一种或多种。
[0133]
优选的,所述多孔介质为纳米级沸石、蒙脱石、硅藻土、凹凸棒石、海泡石中的一种或多种。
[0134]
优选的,所述阻燃剂可以为无卤阻燃剂,也可以为有卤阻燃剂。
[0135]
进一步的,所述多孔聚丙烯膜层2036的平均孔径为1~50um。
[0136]
更进一步的,所述多孔聚丙烯膜层2036的孔隙率为60~80%。
[0137]
更进一步的,所述多孔聚丙烯膜层2036中β晶的形成性为60~70%。
[0138]
更进一步的,所述多孔聚丙烯膜层2036的厚度为10~100um,优选为50~80um。
[0139]
具体的,所述多孔聚丙烯膜层2036的制备过程如下:
[0140]
s1,首先将无规共聚聚丙烯和β成核剂混合均匀,并通过挤出造粒制得母粒;
[0141]
s2,将所述母粒、孔径调节剂、助剂混合均匀后,在180~230℃下熔融挤出,得到熔体;
[0142]
s3,将所述熔体依次通过流延辊、退火辊、胶辊及收卷辊后,得到膜片;
[0143]
s4,将所述膜片经拉伸和热定型后,得到多孔聚丙烯基膜;
[0144]
s5,将多孔介质与阻燃剂材料在0.3~1mpa的压力下,搅拌、混合均匀后,得阻燃颗粒2034;
[0145]
s6,将阻燃颗粒2034均匀涂覆在所述多孔聚丙烯基膜上;
[0146]
s7,通过压辊将负载了阻燃剂颗粒的多孔介质压入所述多孔聚丙烯基膜中,得到所述多孔聚丙烯膜层2036。
[0147]
优选的,在所述步骤s3中,所述流延辊的温度为120℃~150℃,所述退火辊的温度为60~90℃,优选为60~75℃;所述退火辊的数量为3~5个。
[0148]
进一步的,在所述步骤s3中,所述熔体依次通过流延辊、退火辊、胶辊及收卷辊的速度为0.5~2m/min。
[0149]
优选的,在所述步骤s4中,拉伸温度为120~160℃,单向拉伸倍率为1~3倍,同步双向拉伸倍率为1~5倍。
[0150]
优选的,在所述步骤s7中,所述压辊的压力根据需要设置,以能够将负载了阻燃剂颗粒的多孔介质压入所述多孔聚丙烯基膜中的孔隙内为宜。
[0151]
在所述多孔聚丙烯膜层2036的制备过程中,通过熔融、流延、退火、拉伸和热定型提高了β晶的完善程度,减弱了片晶之间的连接强度,使得拉伸时β晶片易于滑移,形成孔径
较大、连通性较好的微孔,为所述多孔介质提供了容置空间。
[0152]
进一步的,所述相变材料层2035包括如下重量份的原料:
[0153][0154]
其中,所述相变储能材料优选为有机相变材料,如石蜡、蜂蜡、硅蜡、凡士林、棕榈酸、脂肪酸类、脂肪醇类中的一种或多种。
[0155]
进一步的,所述含有氨基活性官能基团的有机小分子为二乙醇胺、三乙醇胺、乙二胺中的一种或多种。
[0156]
进一步的,所述交联剂为四氟对苯二腈、二异氰酸酯、聚乙烯醇、二乙三胺中的一种或多种。
[0157]
更进一步的,所述相变材料层2035的制备方法如下:
[0158]
z1,通过水浴加热,将相变储能材料加热至70~90℃,搅拌、使其完全熔融;
[0159]
z2,将高岭土加入到上述步骤z2得到的熔融体系中,搅拌均匀后,将其在70~90℃进行真空吸附8~10h,之后,自然冷却至室温,得复合相变储能材料;
[0160]
z3,将复合相变储能材料加入的壳聚糖溶液中,搅拌均匀后,加入交联剂和含有氨基活性官能基团的有机小分子,持续搅拌0.5~1h后,得相变材料混合体系,备用;
[0161]
z4,将相变材料混合体系涂覆在所述增强网的外侧,即下述的第一网格结构所在的一侧,之后将其在-25~-5℃下冷冻干燥后,得所述相变材料层2035。
[0162]
其中,所述壳聚糖溶液为壳聚糖重量百分含量为6~20%的稀酸溶液。
[0163]
在所述相变材料层2035的制备过程中,首先通过相变储能材料熔融插层高岭土,形成了复合相变储能材料,在高岭土的层状硅酸盐结构吸附作用下,相变储能材料在吸热、放热产生相变的过程中,既能够产生一定程度的滑移,使得相变过程、尤其是相变过程中伴随的体积变化容易发生,又能够对相变储能材料进行一定程度的吸附、定位,避免其由于远程流动、泄露等原因导致的内层203和中间层202的强度降低。
[0164]
再者,通过添加壳聚糖和交联剂,在所述复合相变储能材料的外围形成了三维网状的包裹体系,对复合相变储能材料进行包裹定位,避免其泄露。
[0165]
此外,添加的含有氨基活性官能基团的有机小分子能够在熔融挤出中间层202的过程中,与中间层202中的氯化聚丙烯发生反应,取代氯化聚丙烯中的氯原子,使得所述相变材料层2035能够与中间层202稳定地结合在一起。
[0166]
进一步的,所述增强网包括第一网格结构和第二网格结构,所述第一网格结构为直径<10um的细纤维2032交叉复合而成的网状结构;所述第二网格结构为直径>100um的粗纤维2031交叉复合而成的网状结构。
[0167]
优选的,所述第一网格结构和第二网格结构为18目以上的网格结构。
[0168]
更进一步的,所述粗纤维2031为刚性纤维,所述细纤维2032为弹性纤维。
[0169]
如图3~7所示,在所述增强网中,最终由所述粗纤维2031和细纤维2032交替作为径向纤维、以及所述粗纤维2031和细纤维2032交替作为纬向纤维交叉复合而成方格状纤维网,其中,所述粗纤维2031为玻璃纤维、碳纤维、金属丝等中的一种或多种,所述纤维2032为尼龙纤维、聚酯纤维、氨纶纤维和芳纶纤维中的一种或多种。
[0170]
进一步的,所述增强网的制备过程如下:
[0171]
首先,将所述细纤维2032编织成第一网格结构;
[0172]
然后,将所述粗纤维2031编织成第二网格结构;
[0173]
之后,将所述第一网格状结构和第二网格状结构重叠设置,并使得所述细纤维2032和粗纤维2031交错间隔设置,最后通过热压、复合在一起,即得所述增强网。
[0174]
在本技术中,将所述第一网格结构所在的一侧称为所述增强网的外侧,将所述第二网格结构所在的一侧称为所述增强网的内侧,相应的,当所述内层203设置在支撑层1上后,所述第一网格结构位于靠近所述中间层202的一侧,所述第二网格结构位于靠近所述支撑层1的一侧。
[0175]
进一步的,将所述增强网中方格状纤维网中的45
°
角平分线记为线l,则将所述增强网设置在所述支撑层1外后,所述线l与所述支撑层1的中心轴线平行设置。如此,所述粗纤维2031和细纤维2032将呈螺旋状交错、缠绕在所述支撑层1外,通过弹性的细纤维2032可以为所述内层203提供一定的径向弹力,同时对刚性的粗纤维2031进行弹性定位,防止粗纤维2031过多地偏离设定位置;而所述粗纤维2031由于是螺旋状缠绕在所述支撑层1外,因此,其可以允许所述内层203在轴向上进行伸缩和弯曲,为所述内层203提供一定的轴向弹力和韧性。
[0176]
此外,所述增强网,尤其是其中的第一网格结构还能够对所述相变材料层2035中的相变储能材料进行进一步的定位。
[0177]
进一步的,所述多孔聚丙烯膜层2036通过热压复合在所述增强网上,尤其是所述第二网格结构中。
[0178]
优选的,所述相变材料层2035填充在所述增强网靠近所述支撑层1的一侧,即所述第一网格结构所在一侧;所述多孔聚丙烯膜层2036填充在所述增强网远离所述支撑层1的一侧,即所述第二网格结构所在一侧,通过所述增强网将所述相变材料层2035和多孔聚丙烯膜层2036复合在一起,同时为所述内层203提供一定的增强、增韧作用。
[0179]
进一步的,所述相变材料层2035的厚度为所述粗纤维2031直径的0.2~0.5倍,所述多孔聚丙烯膜层2036的厚度为所述粗纤维2031直径的0.5~0.8倍,且所述粗纤维2031直径的1倍≤所述相变材料层2035和多孔聚丙烯膜层2036的总厚度≤所述粗纤维2031直径的1.2倍。如此,通过所述增强网能够将所述相变材料层2035和多孔聚丙烯膜层2036稳定地复合在一起,并对所述相变材料层2035和多孔聚丙烯膜层2036起到优异的定位、定型作用。
[0180]
同时,由于所述粗纤维2031和细纤维2032的直径相对大小设置,以及所述相变材料层2035和多孔聚丙烯膜层2036的厚度设置,可以在所述内层203中形成多个毗邻的阻燃微区2033,具体的,如图3~8所示,所述阻燃微区2033为由所述粗纤维2031围成的矩形区域,在所述阻燃微区2033内,外侧填充着相变储能材料,内侧填充着阻燃颗粒2034,相变储能材料和阻燃颗粒2034分别通过承载其的基体材质和增强网构成的网格状结构实现位置
的固定,这种结合方式具有以下优点:
[0181]
第一,相变储能材料通过高岭土进行负载,之后通过壳聚糖交联形成的三维网状结构进行包裹,不易产生大幅位移和泄露,不易对与其相邻的中间层202和多孔聚丙烯膜层2036产生影响;
[0182]
第二,阻燃材料通过物理压合的方式填充在多孔聚丙烯膜层2036中,不与其他层产生化学交联或反应,不会对支撑层1、中间层202和外层201的强度和韧性产生明显影响;
[0183]
第三,阻燃材料通过多孔聚丙烯膜层2036进行负载的方式,能够将阻燃材料集中在极薄的多孔聚丙烯膜层2036中,实现阻燃材料的层状富集,在支撑层1和功能层2之间形成了一个高强度的阻燃介质密集层,避免了阻燃材料在电力导管中的均匀分散分布,一方面,避免了阻燃材料对电力导管整体性质的不利影响;另一方面,提高了阻燃材料的阻燃效果,降低了阻燃材料的用量。
[0184]
进一步的,所述内层203的内侧通过热敏发泡胶粘附在所述支撑层1外围。
[0185]
此外,本技术还提供一种改性聚丙烯电力导管的制备方法,所述方法用于制备上述的改性聚丙烯电力导管,所述方法包括步骤:
[0186]
p1,制备支撑层1:
[0187]
(a1)混料:按照支撑层1的厚度和重量配比分别称取无规共聚聚丙烯、均聚聚丙烯、丁二烯橡胶、β成核剂、助剂,将各原料搅拌至混合均匀;
[0188]
(a2)造粒:将混合均匀后的物料加入至挤出机中,挤出、造粒,得支撑层1的粒料,其中,挤出机的一区温度为150~190℃,二区温度为160~230℃,三区温度为180~240℃,四区温度为185~255℃,挤出机的螺杆转速为5~30转/min;
[0189]
(a3)挤出支撑层1:将所得的粒料加入至双螺杆或单螺杆挤出机中,挤出成型,得支撑层1;其中,挤出机的一区温度为150~190℃,二区温度为160~230℃,三区温度为180~240℃,四区温度为185~255℃,模具的一区温度为180~245℃,二区温度为180~250℃,三区温度为190~255℃,口模温度为190~265℃,挤出机的螺杆转速为5~30转/min,牵引速度为2~10m/min;
[0190]
p2,制备内层203:
[0191]
(b1)涂覆热敏发泡胶:将热敏发泡胶通过挤出机环状挤出涂覆的方式涂覆至支撑层1的外表面上;
[0192]
(b2)设置多孔聚丙烯膜层2036:将预制完成的多孔聚丙烯膜层2036包裹并压合在所述支撑层1的外表面,使其通过热敏发泡胶粘附在支撑层1的外表面上;
[0193]
(b3)设置增强网,将增强网通过热压固定在所述多孔聚丙烯膜层2036上,热压时的压力设置以所述增强网中的第二网格结构能够部分插入所述多孔聚丙烯膜层2036内、且第一网格结构和部分第二网格结构裸露在所述多孔聚丙烯膜层2036外为宜;
[0194]
(b4)设置相变材料层2035:将预制完成的相变材料混合体系涂覆在所述增强网的外侧,即所述第一网格结构所在一侧,之后将其在-25~-5℃下冷冻干燥后,得所述相变材料层2035;
[0195]
p3,制备中间层202和外层201:
[0196]
(c1)混料:按照中间层202的厚度和原料重量份比称取中间层202的原料,并将其搅拌、混匀,得中间层202的混合料;此外,按照外层201的厚度和重量份比称取外层201的原
料,并将其搅拌、混匀,得外层201的混合料;
[0197]
(c2)分别将中间层202的混合料与外层201的混合料加入双螺杆挤出机中,将中间层202和外层201的管材挤出至支撑层1和内层203外围,得到所述电力导管,其中,挤出机机筒的一区温度为165~180℃,二区温度为175~185℃,三区温度为190~210℃,四区温度为210~230℃,模具的一区温度为210~220℃,二区温度为200~190℃,三区温度为175~185℃,口模温度为170~175℃,挤出机的螺杆转速为5~30转/min,牵引速度为2~5m/min。
[0198]
以下通过具体的试验例对上述的改性聚丙烯电力导管的制备方法进行举例说明:
[0199]
实施例1
[0200]
制备多孔聚丙烯膜层:
[0201]
取无规共聚聚丙烯700g、β成核剂10g、苯甲酸盐20g、有卤阻燃剂200g、蒙脱石200g、助剂100g,首先将无规共聚聚丙烯和β成核剂混合均匀,并通过挤出造粒制得母粒;然后将所述母粒、苯甲酸盐、助剂混合均匀后,在180℃下熔融挤出,得到熔体;将所述熔体依次通过流延辊、退火辊、胶辊及收卷辊后,得到膜片,其中,所述流延辊的温度为120℃,所述退火辊的温度为70℃,退火辊的数量为3个,熔体依次通过速度为1m/min;之后将所述膜片在140℃下同步双向拉伸3倍,经热定型后,得到多孔聚丙烯基膜;
[0202]
此外,将多孔介质与阻燃剂材料在0.5mpa的压力下,搅拌、混合均匀后,得阻燃颗粒;并将阻燃颗粒均匀涂覆在所述多孔聚丙烯基膜上;之后通过压辊将负载了阻燃剂颗粒的多孔介质压入所述多孔聚丙烯基膜中,得到厚度为100um多孔聚丙烯膜层。
[0203]
实施例2
[0204]
相变材料层的制备:
[0205]
取石蜡500g、高岭土300g、二乙醇胺50g,壳聚糖50g、聚乙烯醇2g,将石蜡通过水浴加热至80℃,搅拌、使其完全熔融;之后将高岭土加入到熔融的石蜡中,搅拌均匀后,将其在70℃进行真空吸附8h,之后,自然冷却至室温,得复合相变储能材料;将复合相变储能材料加入的6%的壳聚糖稀酸溶液中,搅拌均匀后,加入聚乙烯醇和二乙醇胺,并持续搅拌0.5h后,得相变材料混合体系,将相变材料混合体系涂覆在所述增强网中第一网格结构所在的一侧,之后将其在-25~-5℃下冷冻干燥后,得相变材料层。
[0206]
实施例3
[0207]
电力导管的制备:
[0208]
首先按照支撑层的厚度和重量配比分别称取无规共聚聚丙烯、均聚聚丙烯、丁二烯橡胶、β成核剂、助剂,将各原料搅拌至混合均匀;将混合均匀后的物料加入至挤出机中,挤出、造粒,得支撑层的粒料,其中,挤出机的一区温度为150℃,二区温度为160℃,三区温度为180℃,四区温度为185℃,挤出机的螺杆转速为5转/min;之后将所得的粒料加入至双螺杆挤出机中,挤出成型,得支撑层;其中,螺杆挤出机机筒的一区温度为150℃,二区温度为160℃,三区温度为180℃,四区温度为185℃,模具的一区温度为180℃,二区温度为180℃,三区温度为190℃,口模温度为190℃,挤出机的螺杆转速为5转/min,牵引速度为2m/min,得到支撑层管材;
[0209]
之后将热敏发泡胶通过挤出机环状挤出涂覆的方式涂覆至支撑层的外表面上;将实施例1制备得到的多孔聚丙烯膜层包裹并压合在所述支撑层的外表面,使其通过热敏发泡胶粘附在支撑层的外表面上;将增强网通过热压固定在所述多孔聚丙烯膜层上,其中,增
强网中的细纤维为直径为8um的氨纶纤维,粗纤维为直径为120um的钢丝,增强网中第一网格结构和第二网格结构的目数均为18目,热压时的压力设置以所述增强网中的部分第二网格结构插入所述多孔聚丙烯膜层内、且第一网格结构和剩余第二网格结构裸露在所述多孔聚丙烯膜层外为宜;将预制完成的相变材料混合体系涂覆在所述增强网中所述第一网格结构所在的一侧,之后将其在-15℃下冷冻干燥后,得相变材料层,其中,相变材料层的厚度为30um;
[0210]
然后按照中间层的厚度和原料重量份比称取中间层的原料,并将其搅拌、混匀,得中间层的混合料;此外,按照外层的厚度和重量份比称取外层的原料,并将其搅拌、混匀,得外层的混合料;分别将中间层的混合料与外层的混合料加入双螺杆挤出机中,将中间层和外层的管材挤出至支撑层和内层外围,得到所述电力导管,其中,挤出机机筒的一区温度为165℃,二区温度为175℃,三区温度为190℃,四区温度为210℃,模具的一区温度为210℃,二区温度为200℃,三区温度为175℃,口模温度为170℃,挤出机的螺杆转速为10转/min,牵引速度为3m/min。
[0211]
本实施例中,支撑层的原料、中间层的原料、外层的原料称取均按照最低的重量份比称取。
[0212]
最后经测量得到:实施例3得到的电力导管的外径为25mm,壁厚为1.96mm。
[0213]
在显微镜下对本实施例得到的电力导管的尺寸进行测量,得到支撑层的壁厚约为506um、内层的壁厚约为124um、中间层的壁厚约为1042um、外层的壁厚约为291um。
[0214]
实施例4
[0215]
本实施例与上述实施例3的区别在于,支撑层的原料、中间层的原料、外层的原料称取均按照最高的重量份比称取,其余参数均匀上述实施例1相同。
[0216]
实施例4得到的电力导管的外径为25mm,壁厚为2.05mm,在显微镜下对本实施例得到的电力导管的尺寸进行测量,得到支撑层的壁厚约为508um、内层的壁厚约为121um、中间层的壁厚约为1056um、外层的壁厚约为362um。
[0217]
试验例1
[0218]
对上述实施例3得到的电力导管进行性能检测,其中:
[0219]
环刚度依据gb/t9647-2003《热塑性塑料管材环刚度的测定》进行测定;
[0220]
拉伸强度及断裂伸长率依据gb/t8804.2-2016《热塑性塑料管材拉伸性能的测定》进行测定;
[0221]
弯曲强度按照gb/t9341-2008《塑料弯曲性能的测定》进行测定;
[0222]
悬臂梁冲击强度按照gb/t1843-2008《塑料悬臂梁冲击强度的测定》进行测定;
[0223]
导热系数依据gb/t10297-2015《非金属固体材料导热系数的测定热线法》进行测定;
[0224]
阻燃等级依据ul94《阻燃等级测试标准及方法》进行测定,检测结果如表1所示:
[0225]
表1力学性能检测结果
[0226][0227]
虽然本发明披露如上,但本发明并非限定于此。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

技术特征:


1.一种改性聚丙烯电力导管,其特征在于,包括:支撑层(1),其为改性聚丙烯管;功能层(2),其为包覆在所述支撑层(1)外围的多层管状结构;所述功能层(2)包括自内而外、依次设置的:外层(201),其为改性聚丙烯与第一增强纤维复合而成的管状发泡体;中间层(202),其为改性聚丙烯与第二增强纤维复合而成的管状发泡体;内层(203),其由相变材料层(2035)、多孔聚丙烯膜层(2036)和增强网复合而成,在所述多孔聚丙烯膜层(2036)中设置阻燃剂。2.根据权利要求1所述的改性聚丙烯电力导管,其特征在于,所述支撑层(1)包括如下重量份的原料:所述外层(201)包括如下重量份的原料:其中,所述第一增强纤维为弹性纤维和刚性纤维的混合物;所述中间层(202)包括如下重量份的原料:
其中,所述第二增强纤维为刚性纤维。3.根据权利要求1或2所述的改性聚丙烯电力导管,其特征在于,在所述功能层(2)中,所述外层(201)、中间层(202)和内层(203)之间的厚度比为1:(3~10):(0.2~0.5);所述外层(201)的孔隙率为80~87%,所述中间层(202)的孔隙率为50~65%;所述外层(201)中的气孔平均直径为6~10um,所述中间层(202)中的气孔平均直径为3~5um。4.根据权利要求1所述的改性聚丙烯电力导管,其特征在于,所述多孔聚丙烯膜层(2036)包括如下重量份的原料:(2036)包括如下重量份的原料:5.根据权利要求4所述的改性聚丙烯电力导管,其特征在于,所述多孔聚丙烯膜层(2036)的制备过程如下:s1,首先将无规共聚聚丙烯和β成核剂混合均匀,并通过挤出造粒制得母粒;s2,将所述母粒、孔径调节剂、助剂混合均匀后,在180~230℃下熔融挤出,得到熔体;s3,将所述熔体依次通过流延辊、退火辊、胶辊及收卷辊后,得到膜片;s4,将所述膜片经拉伸和热定型后,得到多孔聚丙烯基膜;s5,将多孔介质与阻燃剂材料在0.3~1mpa的压力下,搅拌、混合均匀后,得阻燃颗粒;s6,将阻燃颗粒均匀涂覆在所述多孔聚丙烯基膜上;
s7,通过压辊将负载了阻燃剂颗粒的多孔介质压入所述多孔聚丙烯基膜中,得多孔聚丙烯膜层。6.根据权利要求1所述的改性聚丙烯电力导管,其特征在于,所述增强网包括第一网格结构和第二网格结构,所述第一网格结构为直径<10um的细纤维(2032)交叉而成的网格状结构;所述第二网格结构为直径>100um的粗纤维(2031)交叉而成的网格状结构;将所述增强网设置在所述支撑层(1)外后,所述第一网格结构位于靠近所述中间层(202)的一侧,所述第二网格结构位于靠近所述支撑层(1)的一侧;将网格状增强网中的45
°
角平分线记为直线l,所述直线l与所述支撑层(1)的中心轴线平行设置。7.根据权利要求6所述的改性聚丙烯电力导管,其特征在于,在所述内层(203)中形成多个毗邻的阻燃微区(2033),所述阻燃微区(2033)为由所述粗纤维(2031)围成的矩形区域,在所述阻燃微区(2033)的外侧填充相变储能材料,内侧填充阻阻燃剂,相变储能材料和阻燃剂分别通过承载其的基体材质和增强网进行固定。8.根据权利要求6所述的改性聚丙烯电力导管,其特征在于,所述相变材料层(2035)包括如下重量份的原料:9.根据权利要求8所述的改性聚丙烯电力导管,其特征在于,所述相变材料层(2035)的制备方法如下:z1,通过水浴加热,将相变储能材料加热至70~90℃,搅拌、使其完全熔融;z2,将高岭土加入到上述步骤z2得到的熔融体系中,搅拌均匀后,将其在70~90℃进行真空吸附8~10h,之后,自然冷却至室温,得复合相变储能材料;z3,将复合相变储能材料加入的壳聚糖溶液中,搅拌均匀后,加入交联剂和含有氨基活性官能基团的有机小分子,持续搅拌0.5~1h后,得相变材料混合体系,备用;z4,将相变材料混合体系涂覆在所述增强网中第一网格结构所在一侧,之后将其在-25~-5℃下冷冻干燥后,得相变材料层。10.一种改性聚丙烯电力导管的制备方法,其特征在于,所述方法用于制备上述权利要求1~9任一项所述的改性聚丙烯电力导管,所述方法包括步骤:p1,制备支撑层:(a1)混料:按照支撑层的厚度和重量配比分别称取各原料,并将各原料搅拌至混合均匀;(a2)造粒:将混合均匀后的物料加入至挤出机中,挤出、造粒,得支撑层的粒料;
(a3)挤出支撑层:将所得的粒料加入至双螺杆或单螺杆挤出机中,挤出成型,得支撑层;p2,制备内层:(b1)涂覆热敏发泡胶:将热敏发泡胶通过挤出机环状挤出涂覆的方式涂覆至支撑层的外表面上;(b2)设置多孔聚丙烯膜层:将预制完成的多孔聚丙烯膜层包裹并压合在所述支撑层的外表面,使其通过热敏发泡胶粘附在支撑层的外表面上;(b3)设置增强网,将增强网通过热压固定在所述多孔聚丙烯膜层上,热压时的压力设置以所述增强网中的第二网格结构能够部分插入所述多孔聚丙烯膜层内、且第一网格结构和部分第二网格结构裸露在所述多孔聚丙烯膜层外为宜;(b4)设置相变材料层:将预制完成的相变材料混合体系涂覆在所述增强网中第一网格结构所在的一侧,之后将其在-25~-5℃下冷冻干燥后,得相变材料层;p3,制备中间层和外层:(c1)混料:按照中间层的厚度和原料重量份比称取中间层的原料,并将其搅拌、混匀,得中间层的混合料;按照外层的厚度和重量份比称取外层的原料,并将其搅拌、混匀,得外层的混合料;(c2)分别将中间层的混合料与外层的混合料加入双螺杆挤出机中,将中间层和外层的管材挤出至支撑层和内层外围,得到所述电力导管。

技术总结


本发明提供了一种改性聚丙烯电力导管及其制备方法,所述电力导管包括:支撑层,其为改性聚丙烯管;功能层,其为包覆在所述支撑层外围的多层管状结构;所述功能层包括自内而外、依次设置的:外层,其为改性聚丙烯与第一增强纤维复合而成的管状发泡体;中间层,其为改性聚丙烯与第二增强纤维复合而成的管状发泡体;内层,其由相变材料层、多孔聚丙烯膜层和增强网复合而成,在所述多孔聚丙烯膜层中设置阻燃剂,本发明所述的改性聚丙烯电力导管及其制备方法具有强度高、韧性好以及阻燃性能佳的优点。点。点。


技术研发人员:

吴新华 姜渭龙 李斌

受保护的技术使用者:

浙江龙财塑业有限公司

技术研发日:

2022.07.26

技术公布日:

2022/10/4

本文发布于:2024-09-22 01:25:36,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/8558.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:所述   聚丙烯   多孔   中间层
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议