基于BP神经网络模型的浅海分层海底地声参数反演方法与流程


基于bp神经网络模型的浅海分层海底地声参数反演方法
技术领域
1.本发明属于海洋工程领域,具体涉及一种基于bp神经网络模型的浅海分层海底地声参数反演方法。


背景技术:



2.地声参数(geoacoustic parameters)是描述海底声学特性的参数,包括介质声速(含声衰减)和介质密度两大类,这两类地声参数是有效研究浅海海底声传播特性的重要物理参数,如何高效获取浅海地声参数,一直是国内水声学研究领域的经典与热点问题。
3.浅海海底地声参数是研究浅海声传播特性的重要物理参数量,随着声学技术的发展以及机器算法的普及,利用声学方法对海底地声参数进行反演有着便捷、高效的优势。以参数反演为目标,前人已经开展了大量的海底地声参数反演工作,发展了许多反演海底地声参数的方法,如利用传播损失的地声参数反演方法、利用声信号到达时间的地声参数反演方法、利用波导频散特性的反演方法等。其中应用较多的方法可以总结为利用水声信号的物理特性结合全局寻优算法对海底地声参数进行匹配场反演,采用了不同的物理特性作为正演模型,再通过各类寻优算法,如遗传算法、模拟退火算法等,对目标函数进行求解得到待反演参数结果。
4.但上述地声参数反演方法在研究中主要关注对反演问题中正演模型的选择,再通过各类经典寻优算法,如遗传算法、模拟退火算法等,对目标函数进行求解得到待反演参数结果。在处理未知海底分层下的实验数据时,无法准确给出符合该分层的地声参数反演结果,并且现有各类经典寻优算法在应用时,输入数据与最优解之间的迭代寻优计算不但需耗费大量计算时间,且容易陷入局部最优解。
5.基于上述现状,申请人提出了一种基于bp神经网络模型的浅海分层海底地声参数反演方法,以期实现对浅海分层海底地声参数的高效、准确反演。


技术实现要素:



6.为了弥补现有技术的不足,本发明提供一种基于bp神经网络模型的浅海分层海底地声参数反演方法技术方案。
7.由于浅海地声参数是决定浅海环境下声场分布特征的重要环境参数,海底分层结构与地声参数的变化将对水中声压场的分布特性产生显著影响,因而可以通过浅海声压场测量数据反推海底的分层结构与地声参数。
8.在传统基于声压数据的浅海地声参数反演方法,采用的是通过实测声压数据与声场模型仿真值多次匹配寻优的手段。即通过各类寻优算法,在多组地声参数对应的仿真声压数据中搜索最优匹配实测声压的一组地声参数作为反演结果。但寻优算法在应用过程中易陷入局部最优解,且每一次寻优过程都需要循环带入声场正演模型进行迭代计算,大大增加了计算时间。而神经网络模型从机器学习的角度出发,通过反复训练声压数据集与待反演地声参数间的网络模型,使其逼近两者间的复杂非线性映射,完成验证后,只需将实测
声压数据代入训练后模型即可获得对应待反演参数,避免了寻优算法使用中的反复迭代计算,不仅能大幅缩短计算时间,且具有很强的鲁棒性。
9.本技术中,将利用预设浅海环境模型下仿真正演声压场数据作为训练声压数据集,训练得到满足预设模型下声压场与分层结构与待反演地声参数映射关系的bp神经网络模型,最终利用该模型实现对预设浅海环境模型下分层判断以及地声参数的高效反演获取。
10.一种基于bp神经网络模型的浅海分层海底地声参数反演方法,包括:
11.s1构建浅海声场正演模型,获得流体中各点声压值,构成声压数据集p;
12.s2构建bp神经网络模型;
13.s3训练矫正s2中的bp神经网络模型,使其符合浅海声场正演模型下的地声参数反演需要;
14.s4将实测声压代入bp神经网络模型,得到预设环境模型中分层结构和各项待反演地声参数值。
15.进一步地,所述s1包括:
16.在三维柱坐标系下预设符合浅海环境特点的声场模型,模型中简谐点声源位于柱坐标对称轴上,将三维问题转化为二维(r,z)平面上求解,z=0代表海面,海面向下为深度z轴正值方向,r正轴表示声场传播方向;模型中,设海水层深度设为h1;频率为f0的声源位于海水层深度zs处;海水层中密度和声速分别为ρ1和c1;第n层沉积层的纵波声速、横波声速、密度、纵波声速衰减和横波声速衰减分别用c
pn
、c
sn
、ρ
bn
、α
pn
、α
sn
表示;设模型流体层中的位移势函数为φ1,声压满足p=ρ1ω2φ1,角频率ω=2πf0,通过求解位移势函数得到流体中各点声压值,水层中声压场表示为:
[0017][0018]
其中,z1为深度z和水平波数ξ的常微分方程,j0为零阶贝塞尔函数;
[0019]
求解公式(3),得到声压数据集p。
[0020]
进一步地,所述s2包括:
[0021]
net-2-1模型,其输入层i个不同接收位置(ri,zi)(1≤i≤n)的m组声压数据p=[p1(r1,z1),

,pj(ri,zi),

,pm(rn,zn)]m×n作为输入数据,并将与之对应的地声参数y=[c
p
,cs,ρb,α
p,
αs]m×5作为标签数据进行模型构建,其余模型同理可得。
[0022]
进一步地,所述s2还包括:
[0023]
在bp神经网络模型构建时设置单隐含层;模型中,同一层间的神经元不相互连接,层与层之间存在两种信号交流,一种是工作信号函数,即输入层中声压场数据pj(ri,zi)与超参数矩阵[w,b]之间的激活函数f(x),其信号由输入层向输出层正向传递,表达式为另一种是误差信号e(m),即网络模型反演结果和真值之间的误差函数,其由输出端开始逐层向输出端传递,表达式为
[0024]
其中,w=[w
kv
,w
vl
],w
kv
表示输入层到隐含层的权值,w
vl
表示隐含层到输出层的权值,bv表示隐含层各神经元的阈值,x为各神经元的输入数值,y
r,e
=[c
p
,cs,ρb,α
p
,αs],为待
反演参数组成的矩阵,yr表示仿真值,ye表示反演值,n表示样本数量;
[0025]
声压数据p代入输入层后,通过超参数矩阵[w,b]以及激活函数f(x)连接各层神经元,经过隐含层、输出层最终得到反演结果ye。
[0026]
进一步地,所述s2还包括:各层神经元的设置个数依据进行确定;
[0027]
其中,n表示输入层节点数,即仿真声压点数,v表示隐含层的节点数,l表示输出层的节点数,即反演地声参数个数,α为常数系数。
[0028]
进一步地,所述s2还包括:bp神经网络模型中i
kv
、i
vl
分别为隐含层输入数据,隐含层输出数据,i
vl
计算公式为所得反演结果ye计算公式为
[0029]
进一步地,所述s2还包括:采用梯度下降的方式来更新参数,设计过程如下:
[0030][0031][0032]
其中,声压数据p至隐含层之间权值参数的偏导数为δw
kv
,隐含层至地声参数y之间的权值的偏导数为δw
vl
,η为学习率,计算过程中根据e(m)值是否满足设定精度而不断更新迭代步数t修正参数w
kv
、w
vl
,如修正公式为w
kv
(t+1)=w
kv
(t)+δw
kv
,w
vl
(t+1)=w
vl
(t)+δw
vl

[0033]
进一步地,所述s3还包括:将训练集中每组参数与其对应生成的环境声压一一映射后代入模型进行训练,当误差函数e(m)达到所设定的精度要求时,即训练完成。
[0034]
本发明提出了一种针对浅海海底分层结构和密度、纵波声速、横波声速、纵波声速衰减和横波声速衰减5项地声参数的反演方法。方法应用时通过快速场方法获得浅海声压场的理论预报值,其次根据bp神经网络模型建立预报声压场与待反演地声参数值间的关系模型,最后将实测声压场数据带入神经网络模型中即得到反演结果。仿真数据与水池缩比实验数据的处理结果均表明,应用本方法可准确获取所关注的这几类海底地声参数。
[0035]
相较于现有技术中各类寻优算法效率低,易陷入局部最优解的弊端,本发明的基于神经网络模型的地声参数反演方法,通过对构建模型中神经元权值和阈值的调整,使整个神经网络模型快速逼近实测数据与待反演地声参数间的映射关系,在相同精度要求下,较现有寻优算法反演效率更高,并且确定后的神经网络模型可直接用于同类型问题的求解,避免了重复的计算,大大的提升了其应用效率与应用前景。
附图说明
[0036]
图1为本发明流程图;
[0037]
图2为柱坐标下浅海声场正演模型示意图;
[0038]
图3为预设环境下地声参数反演用bp神经网络模型结构示意图;
[0039]
图4为训练过程中训练网络损失函数示意图;
[0040]
图5为训练过程中误差可视化分析示意图;
[0041]
图6为net2-2损失函数变化情况示意图;
[0042]
图7为net-1海底分层结果示意图;
[0043]
图8为200组测试集反演结果与预设值对比图;
[0044]
图9为真值仿真条件下反演tl曲线示意图;
[0045]
图10为仿真条件下bp反演tl曲线示意图;
[0046]
图11为缩比试验数据分层判断;
[0047]
图12为水箱实测tl曲线示意图;
[0048]
图13为bp神经网络反演tl曲线示意图;
[0049]
图14为sa反演tl曲线示意图。
具体实施方式
[0050]
下面结合附图对本发明作进一步说明。
[0051]
请参阅图1,一种基于bp神经网络模型的浅海分层海底地声参数反演方法,包括如下步骤:
[0052]
s1浅海声场正演模型
[0053]
考虑浅海环境下,海洋环境一般可近似视为由海水层与半无限海底层构成的水平分层结构。为此在三维柱坐标系下预设了符合浅海环境特点的声场模型。模型中简谐点声源位于柱坐标对称轴上,考虑浅海波导环境中海底横波声速对声传播的影响不可忽略,海水层与海底层分别近似为均匀各向同性的流体介质和弹性体介质。由于柱坐标系的轴对称性,可以将三维问题转化为二维(r,z)平面上求解,z=0代表海面,海面向下为深度z轴正值方向,r正轴表示声场传播方向。
[0054]
模型中,海底看作n层沉积层的叠加,设海水层深度设为h1;频率为f0的声源位于海水层深度zs处;海水层中密度和声速分别为ρ1和c1;沉积层n的深度则表示为hn,沉积层纵波声速、横波声速、密度、纵波声速衰减和横波声速衰减分别用c
pn
、c
sn
、ρ
bn
、α
pn
、α
sn
表示,上述6类参数即为本发明研究中待反演的海底地声参数。
[0055]
在波动理论下,上述模型中各物理量可统一由位移势函数表示。设模型流体层中的位移势函数为φ1,而本发明的研究对象声压满足p=ρ1ω2φ1(角频率ω=2πf0),即可通过求解位移势函数得到流体中各点声压值,详细的理论推导见文献[22]。由于流体层中的位移势函数满足:
[0056][0057]
各沉积层的势函数φn可表示为:
1为单标签分类器,输出为基于海底分层结构的分类,网络训练采用交叉熵函数e
ce
(cross entropy,ce),如式(5)所示。net-2-x输出为地声参数,网络训练误差由均方根误差函数e
mse
(mean square error,mse)给出,如式(6)所示。
[0068][0069][0070][0071]
其中x为各神经元的输入数值,y
r,e
=[c
p
,cs,ρb,α
p
,αs],为待反演参数组成的矩阵,yr表示仿真值,ye表示反演值,n表示样本数量。
[0072]
声压数据p代入输入层后,通过超参数矩阵[w,b]以及激活函数f(x)连接各层神经元,经过隐含层、输出层最终得到反演结果y
e[24]
。各层神经元的设置个数可依据公式(7)进行确定:
[0073][0074]
其中,n表示输入层节点数,即仿真声压点数,v表示隐含层的节点数,l表示输出层的节点数,即反演地声参数个数,α为常数系数。bp神经网络模型中i
kv
、i
vl
分别为隐含层输入数据,隐含层输出数据,所得反演结果ye计算过程如公式(8)-公式(9)给出:
[0075][0076][0077]
由于网络输入误差是各层权值、阈值的函数,因此通过调整权值可改变误差e(m)。显然,调整权值的原则是使误差不断减小,因此应使权值与误差的梯度下降成正比,所以采用梯度下降的方式来更新参数,设计过程如公式(10)-公式(11)给出:
[0078][0079][0080]
其中声压数据p至隐含层之间权值参数的偏导数为δw
kv
,隐含层至地声参数y之间的权值的偏导数为δw
vl
,η为学习率,计算过程中根据e(m)值是否满足设定精度而不断更新迭代步数t修正参数w
kv
、w
vl
,如公式(12)-公式(13)所示:
[0081]wkv
(t+1)=w
kv
(t)+δw
kv
ꢀꢀ
(12)
[0082]wvl
(t+1)=w
vl
(t)+δw
vl
ꢀꢀ
(13)
[0083]
由于本发明将海底简化做两层从而建立bp神经网络反演模型,网络结构中输入层为仿真声压数据p,一组声压数据p(ri,zi)中,i=1,2,3,

i,输出层为待反演的地声参数,根据公式(8)可确定α=-15,隐含层为v=9个神经元,输出层为l为y所包含的待反演参数个数,其中l
net-1
=4,l
net-2-1
=5,l
net-2-2
=11,l
net-2-3
=17。超参数矩阵(w,b)的元素数量为l=720
×
9+9
×
5+l
net-x
,表明此神经网络模型通过梯度下降法构建时需调整l个权重参数,使神经网络模型逼近输入与输出之间的复杂映射关系,从而实现反演计算。针对本发明所预设的浅海环境模型,所构建的bpnn模型结构如图3所示。
[0084]
s3 bp模型训练数据集
[0085]
虑浅海海底地声参数的变化范围
[25]
,预设环境下地声参数反演用bp神经网络模型的参数训练范围设置如表1给出。仿真声压场数据为设定声源深度zs=20m、接收深度zr=10m、海水层深h=100m下的一组水平等间隔接收声压场,各接收点间隔2m,共设定i=720个接收点。net2-x采用的模型训练样本为在对应分层结构下,表1搜索范围内每层随机生成的2200组声压数据,并随机划分其中2000组为训练集,其余200组数据为测试集。将训练集中每组(分层结构)地声参数与其对应生成的环境声压一一映射后代入模型进行训练,当误差函数e
mse
达到所设定的精度σ=0.01要求时,即训练完成。
[0086]
表1 bp神经网络模型训练参数设定范围
[0087][0088][0089]
采用随机取值的方式生成验证集,net-1的训练过程中的损失函数与预测准确率变化如图所示。从图4可以看出,在训练经过一定批次后,训练曲线的误差即降至σ,网络停止训练,而混淆矩阵也进一步验证net-1对验证数据也有较好的分类效果,能够完成海底分
层结构分类计算。
[0090]
其中,图5中每一个橙方块内部表示预测错误样本数,主对角线表示预测正确样本数,右下浅灰矩形框表示对应样本属性预测准确率,即训练过程中的准确率为95%。
[0091]
net-2-x分别为三种分层结构下的神经网络进行训练,训练过程中的损失函数变化以如图6所示,以对应海底分层结构为单沉积层海底的net-2-2分析,训练完成后e
mse
的值在迭代200次后即达到了设定精度,并且误差下降过程较为平稳,表明整个神经网络在训练中的误差下降速度和训练效果可观;虽然随着反演参数的增加,net-2-x训练中到达精度设置所迭代的步数越多,但均在500次迭代内就到达目标精度,高效构建了满足分层海底地声参数反演精度的bpnn模型。通过控制训练参数以及调整训练函数等方法,在网络训练过程中能够消除过拟合现象,提高模型的泛化能力,高度泛化的多输出模型实际上能够一定程度上解决反演过程中海底参数之间的耦合关系所带来的多值问题,从而实现同时反演多个海底地声参数的目的。
[0092]
s4在完成对预设浅海环境下bp神经网络模型的训练后,实际应用时只需将实测声压代入bp神经网络模型,即可得到预设环境模型中各项待反演地声参数值。
[0093]
上述bp神经网络模型验证过程如下:
[0094]
为验证所构建bp神经网络模型在实际应用中的可行性,下面将分别应用仿真声压数据与缩比实验实测声压数据,对上述所建立bp神经网络模型进行验证,并就bp神经网络模型与经典寻优算法在地声参数反演中的性能进行对比分析。
[0095]
1、仿真数据验证
[0096]
在采用仿真数据和实验数据分别对bpnn模型进行性能测试,并将网络预测结果用于水池实测数据的海底分层计算与地声参数反演。net-1作为分类模型,如式(14)所示,可直接以测试集的分类准确率进行评估。
[0097][0098]
其中,n
t
为分层正确样本数,n为总测试样本数。而net-2-x作为回归分析问题,为量化各参数反演结果与预设真值之间误差,引入性能函数r2从数值上来表示反演值与真实值之间的重合度,r2值越接近1表示反演结果越接近预设真值。
[0099][0100]
为验证训练完成网络的鲁棒性,采用搜寻区间内生成的测试集声压并添加一定环境噪声作为测试数据,测试集的总样本数量为训练集的10%。图7给出了net-1对部分测试集的分层结果展示,分层准确率ea=99%,证明了net-1对不同分层结构下的声压场信息能够有效的进行分层计算。图中“x”表示预测值,“o”表示真实值,y轴为分层结构数的搜索范围。
[0101]
同时对net-2-x模型进行训练,以net-2-2为例,图7给出了net-2-2的海底地声参数反演结果,图中的实线与
“×”
分别对应测试数据集的真实值与预测值,基于图8(a-e)直观上的给出了预测值与真实值之间的吻合情况,结果表明所建立的bpnn模型对c
pn
、c
sn
和ρ
bn
的预测结果更加准确,对参数α
p
、αs的预测准确率相对较低,但测试集所达到的准确率r2为0.9左右,且所输出的参数结果均在所要求的精度0.01以下,初步验证了所建立bpnn模型用于地声参数反演的实用性。图7给出了测试集中各参数预测值与预设值之间的绝对误差值,由图5可以明显观察到在反演模型中各个参数的误差变化趋势,验证时各个参数的误差值均在0.1以下,其中ρ
bn
、c
pn
、c
sn
、hn的结果误差始终维持在0.01以下,反演效果极佳,其中参数α
pn
、α
sn
的误差变化相对较大,但是预测结果中,误差变化较大的参数α
p
的最大误差仅为0.065,并未出现较大的误差波动,可见所构建的bpnn模型对浅海海底地声参数反演具有良好并且稳定的预估性能,预测结果可靠度高。结合图7对海底参数不同敏感度的分析,这套bp神经网络对五类参数反演的鲁棒性为:c
p
、cs、ρb>α
p
、αs。
[0102]
单取真值下的一组声压数据进行反演计算,海底分层结构判断与地声参数反演值如表2所示。图9-10给出了由设定地声参数真值计算得到的传播损失曲线(transmission loss,tl)与应用反演结果计算得到的tl曲线两者间的对比图。从对比中可以看到,两条曲线分布特征基本一致,进一步证明了应用本文所研究的基于bpnn模型反演得到的预设模型下地声参数反演结果的准确性。
[0103]
表2 net-2-1模型训练参数设定范围
[0104][0105]
2、实测数据验证
[0106]
在仿真验证所研究方法准确性及适用性基础上,本节结合消声水池缩比实验数据对本文所研究反演方法在实际应用中的可行性进行进一步验证。实验选择在消声水池中进行,采用均匀、高硬度的pvc板(polyvinyl chloride polymer,聚氯乙烯,测得密度为1.20g/cm-3
)作为“半无限弹性海底”[27-28]
,在pvc板上铺设细砂,模拟具有弹性沉积物和弹性半无限海床的浅海波导环境。实验中布置声源深度zs=87mm,接收深度zr=84mm,水深h=182mm,水中声速c1由声速经验公式考虑标准大气压下水温11.5℃结算得到c1=1450.212m/s;过程中保持声源固定不动,发射f=155khz的脉冲信号,接收水听器放置在可移动走架上,采集卡采样频率fs=20mhz,由单个tc4038标准水听器在不同位置等间隔接收。为提高
测量精度,选择高精度可控移动平台,将误差限制在2um以内,单位精度为2mm的移动距离。实验过程中共测量500个位置点数据,每个位置测量10次取平均值作为最终的试验数据。测得水箱环境中的传播损失如图11所示。
[0107]
将所测声场进行图3所示流程计算,先通过net-1进行分层结构判断,分层结果如图12所示,以概率的形式给出分层结果,可以看出net-1模型对输入声压信号的分层判断为99%的概率为单沉积层海底,与缩比试验情况相符。随即带入半无限海底net-2-1模型进行海底参数反演,并将反演结果与经典模拟退火(simulated annealing,sa)算法结果进行对比,如表3所示,已验证反演结果的准确性。
[0108]
表3实测数据反演结果
[0109][0110][0111]
利用本发明所建立的bp神经网络模型以及经典sa算法分别对水箱实测数据进行参数反演,表5给出两类方法在反演中设置的搜索范围及最终反演结果:
[0112]
表3实测数据反演结果
[0113][0114]
图13-14给出bp神经网络模型和sa反演算法在实测数据上传播损失对比曲线,从图中对比曲线可以看到两种方法的反推tl曲线与实测tl曲线基本一致,结合表5中给出的反演结果,可以看出bp神经网络模型与sa算法对c
p
、cs、ρb、α
p
、αs这五类地声参数反演结果都十分接近,进一步验证了bp神经网络模型在实际地声参数反演研究中的适用性。在已知水池实验中选取的塑料板密度ρb=1.20g/cm-3
左右的情况下,bp神经网络模型与sa反演算法的反演分别为1.21g/cm-3
和1.23g/cm-3
,相对误差值为2.5%以及0.83%,结合图10和图11,虽然bp神经网络模型在精度上与效率方面仅为sa反演算法的30%左右,综合看来bp神经网络算法在地声参数反演工作中会有着更加广阔的应用前景以及发展空间。
[0115]
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

技术特征:


1.一种基于bp神经网络模型的浅海分层海底地声参数反演方法,其特征在于,包括:s1构建浅海分层海底声场正演模型,获得流体中各点声压值,构成声压数据集p,包括:在三维柱坐标系下预设符合浅海环境特点的声场模型,模型中简谐点声源位于柱坐标对称轴上,将三维问题转化为二维(r,z)平面上求解,z=0代表海面,海面向下为深度z轴正值方向,r正轴表示声场传播方向;模型中,将海底看作n层沉积层的叠加,设海水层深度设为h1;频率为f0的声源位于海水层深度z
s
处;海水层中密度和声速分别为ρ1和c1;第n层沉积层的深度则表示为h
n
,第n层沉积层的纵波声速、横波声速、密度、纵波声速衰减和横波声速衰减分别用c
pn
、c
sn
、ρ
bn
、α
pn
、α
sn
表示;设模型流体层中的位移势函数为φ1,声压p满足p=ρ1ω2φ1,角频率ω=2πf0,通过求解位移势函数得到流体中各点声压值,流体层中的位移势函数满足:各沉积层的势函数可表示为φ
n
和ψ
n
,其中δ(r,z)是原函数,k
a
代表第a层海底的波数,a=1,2,3

n,其中k=ω/c
m
,ω=2πf0;求解方程中,pn与sn为解中包含的不确定项,φ
pn
和ψ
sn
为该项所对应的势函数,k
pn
和k
sn
为该项所对应的波数,其形式解为:其中,r为传播距离,z为深度z和水平波数ξ的常微分方程,j0为零阶贝塞尔函数,ω为旋度角速度,根据上述推导结果,水层中声压场可表示为:s2构建bp神经网络模型;s3训练矫正s2中的bp神经网络模型,使其符合浅海分层海底声场正演模型下的分层判断以及地声参数反演需要;s4将实测声压代入bp神经网络模型,得到实测海底的海底分层数以及各项待反演地声参数值。2.根据权利要求1所述的一种基于bp神经网络模型的浅海分层海底地声参数反演方法,其特征在于,所述s2包括:神经网络输入层采用n个不同接收位置(r
i
,z
i
)(1≤i≤i)的m组声压数据p=[p1(r1,z1),

,p
j
(r
i
,z
i
),

,p
m
(r
i
,z
i
)]
m
×
i
作为输入数据,并将与之对应的地声参数y=[c
pn
,c
sn

bn

pn,
α
sn
]
m
×5作为标签数据进行模型构建。3.根据权利要求2所述的一种基于bp神经网络模型的浅海分层海底地声参数反演方法,其特征在于,所述s2还包括:
将分层所用bpnn模型记为net-1,半无限海底、单沉积层以及双沉积层bpnn模型记为:net-2-x,x=1,2,3;总计训练4个bpnn模型;在net模型构建时,设置单隐含层;模型中,同一层间的神经元不相互连接,层与层之间存在两种信号交流,一种是工作信号函数,即输入层中声压场数据p
j
(ri,z
i
)与超参数矩阵[w,b]之间的激活函数f(x),其信号由输入层向输出层正向传递,表达式为另一种是误差信号e,即网络模型反演结果和真值之间的误差函数,其由输出端开始逐层向输出端传递,表达式为net-1为单标签分类器,输出为基于海底分层结构的分类,网络训练采用交叉熵函数其中,w=[w
kv
,w
vl
],w
kv
表示输入层到隐含层的权值,w
vl
表示隐含层到输出层的权值,b
v
表示隐含层各神经元的阈值,x为各神经元的输入数值;n表示样本数量,k表示net-1中的分类数,t
iq
为类别指示变量,如果样本i的真实分层类别等于q取1,否则取0,y
iq
为预测概率;y
r,e
=[c
p
,c
s

b

p,
α
s
],为待反演参数组成的矩阵,y
r
表示仿真值,y
e
表示反演值;声压数据p代入输入层后,通过超参数矩阵[w,b]以及激活函数f(x)连接各层神经元,经过隐含层、输出层最终得到反演结果y
e
。4.根据权利要求3所述的一种基于bp神经网络模型的浅海分层海底地声参数反演方法,其特征在于,所述s2还包括:各层神经元的设置个数依据进行确定;其中,n表示输入层节点数,即仿真声压点数,v表示隐含层的节点数,l表示输出层的节点数,即反演地声参数个数,α为常数系数。5.根据权利要求4所述的一种基于bp神经网络模型的浅海分层海底地声参数反演方法,其特征在于,所述s2还包括:bp神经网络模型中i
kv
、i
vl
分别为隐含层输入数据,隐含层输出数据,i
vl
计算公式为所得反演结果y
e
计算公式为6.根据权利要求5所述的一种基于bp神经网络模型的浅海分层海底地声参数反演方法,其特征在于,所述s2还包括:采用梯度下降的方式来更新参数,设计过程如下:
其中,声压数据p至隐含层之间权值参数的偏导数为δw
kv
,隐含层至地声参数y之间的权值的偏导数为δw
vl
,η为学习率,计算过程中根据e(m)值是否满足设定精度而不断更新迭代步数t修正参数w
kv
、w
vl
,修正公式为w
kv
(t+1)=w
kv
(t)+δw
kv
,w
vl
(t+1)=w
vl
(t)+δw
vl
。7.根据权利要求3-6中任一所述的一种基于bp神经网络模型的浅海分层海底地声参数反演方法,其特征在于,所述s3还包括:将训练集中每组参数与其对应生成的环境声压一一映射后代入模型进行训练,当误差函数e(m)达到所设定的精度要求时,即训练完成。

技术总结


本发明属于海洋工程领域,具体涉及一种基于BP神经网络模型的浅海分层海底地声参数反演方法,包括:构建浅海声场正演模型,获得流体中各点声压值,构成声压数据集p;构建BP神经网络模型;训练矫正S2中的BP神经网络模型,使其符合浅海声场正演模型下的地声参数反演需要;将实测声压代入BP神经网络模型,得到预设环境模型中各项待反演地声参数值,包括海底分层结果的预测。通过对构建模型中神经元权值和阈值的调整,使整个神经网络模型快速逼近实测数据与待反演地声参数间的映射关系,在相同精度要求下,较现有寻优算法反演效率更高,并且确定后的神经网络模型可直接用于同类型问题的求解,避免了重复的计算。避免了重复的计算。避免了重复的计算。


技术研发人员:

崔智强 祝捍皓 柴志刚 刘叙 王加慧 王其乐 汤云峰

受保护的技术使用者:

东海实验室

技术研发日:

2022.11.29

技术公布日:

2023/3/24

本文发布于:2024-09-24 17:08:10,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/78763.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:模型   参数   声压   神经网络
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议