包含低熔点丙烯聚合物的纤维和织物

著录项
  • CN95193236.5
  • 19950519
  • CN1157591
  • 19970820
  • 埃克森化学专利公司
  • G·A·斯塔尔;J·J·迈克宾
  • B32B5/26
  • B32B5/26 D04H13/00 D01F6/06

  • 美国得克萨斯
  • 美国,US
  • 19940524 US08248284
  • 中国国际贸易促进委员会专利商标事务所
  • 黄泽雄
  • 19950519 PCT/US1995/006343
  • 19951130 WO/1995/032091
  • 19961125
摘要
通过金属茂催化剂体系形成的丙烯均聚物和共聚物一般呈现比现有的丙烯聚合物低的熔点性能。这种低熔点性能可用于加工中和用于制备通常依赖较低熔点性能或为实现粘结的两种织物或纤维之间熔点差的纤维和织物中。这些纤维是(例如)绳绒线或簇绒绳、芯皮纤维。织物如纺粘和熔喷织物,当组合为SM或SMS织物时,显示在较低温度下粘结,几乎无针孔。这些织物可通过胶粘剂,如热熔体胶粘剂、水基胶粘剂和挤出的聚烯烃粘结。考虑了Ziegler-Natta催化的与金属茂催化的聚合物的组合。
权利要求

1.  一种织物,包括至少2层:

a)第一层为熔喷层,所述第一层包括T m在140℃至161℃范围内的 聚合物;

b)第二层为纺粘层,所述第二层包括T m在110℃至145℃范围内的 聚合物;

其中所述a)和b)的T m差至少为10℃;

其中所述第一层或所述第二层的至少一种聚合物聚合时具有M w/M n ≤3;

其中所述M w/M n≤3的聚合物优选在金属茂催化剂体系存在下形成, 其中至少一种所述第一层或所述第二层的聚合物至少90%是全同立构的。

2.如权利要求1的织物,其中所述第一层与所述第二层通过热粘结和胶 粘剂层压中的一种方法粘结。

3.如权利要求1的织物,其中所述第一层与所述第二层通过胶粘剂胶粘 层压,其中所述胶粘剂优选自热熔体胶粘剂、水基胶粘剂和聚烯烃聚合物。

4.一种纤维束,包括至少由聚丙烯均聚物制备的第一种纤维,所述均聚 物聚合时的M w/M n≤5,所述第一种纤维的熔点大于140℃,优选大于145 ℃;和

由丙烯与α-烯烃的丙烯共聚物制备的第二种纤维,所述α-烯烃具有2 至20个碳原子,其中所述α-烯烃优选自4-甲基-1-戊烯、1-己烯和1-辛烯 中的一种,其中所述共聚物更优选进一步包括第二种单体,所述第二种单 体是乙烯、1-丁烯、4-甲基-1-戊烯、1-己烯和1-辛烯;

其中所述共聚物聚合时的M w/M n≤3;

其中所述共聚物的熔点高达140℃,其中所述均聚物和所述共聚物的 至少一种是至少90%全同立构的,其中所述生产的共聚物的M w/M n ≤2.5。

5.如权利要求4的纤维束,其中所述α-烯烃在共聚物中的存在量按所述 共聚物的总摩尔数计为0.2至6mol%,优选为0.5至3mol%;

其中所述共聚物聚合时的M w/M n≤2.2

6.一种织物,包括至少2层:

a)第一层为熔喷层,所述第一层包括聚时M w/M n≤3的丙烯聚合物; 所述第一层的丙烯聚合物的T m大于140℃

b)第二层为纺粘层,所述第二层包括聚合时M w/M n≤3的聚烯烃聚 合物;所述第二层的聚烯烃聚合物的T m高达135℃。

7.权利要求6的织物,其中所述丙烯聚合物为均聚物,其中所述聚烯烃 聚合物是丙烯均聚物、丙烯共聚物、乙烯均聚物、乙烯共聚物及其混合物 中的一种,其中所述聚烯烃优选为丙烯α-烯烃共聚物;

所述α-烯烃选自2至20个碳原子的α-烯烃,其中所述α-烯烃优选为4- 甲基-1-戊烯、1-己烯和1-辛烯中的一种;

其中所述α-烯烃在共聚物中的存在量按所述共聚物中共聚单体的总摩 尔数计为0.2至6mol%;

其中所述共聚物聚合时的M w/M n≤2.5

8.一种织物层压制品,包括第一层由第一种热塑性聚合物形成的纺粘热 塑性长丝和第二层由第二种热塑性聚合物形成的继续熔喷热塑性纤维继 续,其中该两层在层压制品中面对面放置,其中该两层经加热粘结,其中 所述第一种和所述第二种热塑性聚合物中的至少一种热塑性聚合物的 M w/M n≤3,其中所述第一种和所述第二种热塑性聚合物聚合时的M w/M n 都小于或等于2.5。

9.一种纤维,包括至少第一种全同立构的丙烯α-烯烃共聚物,所述α-烯烃 是1-己烯、4-甲基-1-戊烯和1-辛烯中的一种;

所述丙烯α-烯烃共聚物聚合时的M w/M n≤3;

其中所述α-烯烃在所述第一种共聚物中的存在量为1至3mol%;

其中所述共聚物的熔点范围为110℃至135℃;

其中所述纤维包括至少第二种热塑性聚合物,所述第二种热塑性聚合 物的熔点高于所述第一种丙烯共聚物的熔点。

10.一种纺粘织物,包括含有全同立构丙烯α-烯烃共聚物的纤维,所述α- 烯烃具有5至10个碳原子;

其中所述共聚物聚合时的M w/M n≤3;

其中所述共聚物的ΔT m高达140℃。

11.一种熔喷织物,包括含有全同立构丙烯聚合物的纤维,所述聚合物聚 合时的M w/M n≤3,所述共聚物的T m高达145℃。

说明书

包含低熔点丙烯聚合物的纤维和织物

本发明一般涉及纤维、织物和其它产品,及由聚合物,特别是丙烯均 聚物或乙烯和/或α-烯烃的丙烯共聚物制备这些产品的方法,其中聚合物利 用金属茂催化剂体系生产。由这些聚合物制备的制品显示比常规 (Ziegler-Natta催化的)均聚物或常规(Ziegler-Natta催化的)共聚物低 的熔点。

聚烯烃聚合物是工业上公知的产品。聚烯烃的用途广泛,这对于本领 域熟练技术人员是公知的。聚烯烃具有很多有用的性能。然而,在很多纤 维、织物或类似产品领域中,常规(对于本申请,常规是指Ziegler-Natta 催化的丙烯均聚物和共聚物)聚烯烃具有的熔点阻止了或基本上限制了它 们用于较低熔点或较大熔点温度差有利的领域。

聚丙烯,均聚物和共聚物已被广泛使用。仅美国每年就生产逾2,000,000 吨聚丙烯。聚丙烯具有从包装膜和片材到食品成型容器及用于尿布 (diaper)和医院工作服(gown)的纤维结构的广泛用途。

聚丙烯由几种类型,其中一种是丙烯与其它烯烃的统计共聚物,有时 也称为无规共聚物。过去,这种聚丙烯大都以乙烯与丙烯的共聚物(通常 用Ziegler-Natta催化剂制备)为代表。过去,高级α-烯烃(HAO)(那 些具有5个或更多碳原子的α-烯烃)与丙烯用Ziegler-Natta催化剂进行共 聚存在问题,原因是这些催化剂对高级α-烯烃的反应活性较低。Ziegler- Natta(Z-N)催化的丙烯-乙烯共聚物当与(Z-N催化的)丙烯均聚物相 比时,发现其用途是基于基本上不同的性质。Ziegler-Natta催化的丙烯均 聚物与丙烯-乙烯共聚物性能的区别大致在于相对于均聚物,共聚物具有较 低的熔点、较高地柔韧性、较好的透明度和稍微改进的韧性。对于纤维或 织物,共聚物在非织造尿布覆盖材料中的柔软度和/或当暴露于高能辐射, 例如γ-射线、紫外线或电子束下时改进的耐降解性为其一个优点。

最近在聚烯烃催化方面的进展已产生了称为金属茂的不同催化剂:

Mitsui Petrochemical Industries的EP0 495 099A1公开了一种丙烯α- 烯烃共聚物,其中丙烯的存在量为90-99mol%,α-烯烃的存在量为1-10 mol%。该文献公开了这种丙烯α-烯烃共聚物具有窄分子量分布 (Mw/Mn)、低熔点和优良的柔软度。该文献公开了用金属茂-铝氧烷催 化剂体系聚合丙烯α-烯烃的方法。该文献还公开了Tm与丙烯含量之间的直 线关系,然而,并未绘出不同α-烯烃的熔点降低效果的区别。

Ausimont的EP0318 049A1公开了丙烯与小部分乙烯和/或α-烯烃的 共聚物。公开了该共聚物具有极好的机械性能。该共聚物是在甲基铝氧烷 化合物存在下聚合的。该文献中给出的例子是丙烯-乙烯共聚物和丙烯-丁烯 -1共聚物。

过去,也曾将不同的(例如低熔点的)Ziegler-Natta丙烯-乙烯共聚物 有利地用于某些纤维和织物领域。然而,两个实际局限已限制了这些应用。 其一是聚丙烯生产厂从经济上考虑可以加入4-5wt%以上的乙烯。具有5 wt%以上乙烯的市售产品不能广泛使用或生产。其二是具有4-5wt%以上 乙烯的丙烯共聚物能够经济地拉伸为纤维的性能基本上被削弱了。

Kimberly Clark Corporation的US5,188,885公开了一种织物层压制 品,该制品与由全同立构聚丙烯点热粘合制备的织物层压制品相比,更柔 软、强度更好、更耐磨并且降低了颗粒析出。这种织物层压制品至少具有 一些由烯烃共聚物、三元聚合物或由烯烃聚合物的共混物形成的层。其中 烯烃聚合物的结晶度低于45%,优选为31-35%。该专利公开了这种聚合 物具有宽的熔化温度范围。在一个实施方案中,丙烯无规共聚物可通过将 0.5-5wt%,优选3%的乙烯共聚入丙烯骨架中形成。该专利进一步公开了 除非在纺粘层与熔喷层之间存在10℃-40℃的熔化温度差,否则粘结性就 不是最佳的并且将降低强度。

在使用非织造材料的传统服装生产中,使用不同种类的织物和聚合 物,以在特定区域利用不同织物的强度性能。这种利用不同织物强度性能 的一个例子是纺粘-熔喷-纺粘(SMS)的惯用于外科手术工作服的复合层 压制品或结构的组合。其中间层由熔喷纤维形成。熔喷纤维一般较柔软且 相对不渗透流体,然而,纤维本身具有强度相对低的特性(例如,撕裂值 低)。因此,为了使用熔喷层和其良好的阻止流体(例如外科手术过程中 的体液)性能,将1或通常2层纺粘材料(它是一种强度比熔喷织物相对 高,但相对多孔的材料)层压至熔喷织物层上。这种层压制品同时具有S 层和M层的性能,即强度高(S层)且基本上不渗透流体(M层)。此 层压可通过多种工艺完成。热层压是理想的且低成本的方法。然而,当两 层或多层之间的熔化或软化点温度差不足够时,用热层压法可能导致的“烧 穿”(通常称为破洞)会出现使(例如)体液通过的空隙机会,因此损害 了SM或SMS层压制品的防护作用。

将这些织物粘合的另一方法是通过粘合剂或胶粘剂,尤其是热熔体胶粘 剂、水基胶粘剂或熔化的聚合物进行。胶粘层压,虽然有效,但很昂贵并 且经常不能得到最佳织物。胶粘剂必须喷涂、涂覆,当使用水基胶粘剂时, 还需要干燥。胶粘层压的织物趋于变“粗”或变硬和不舒适或毫无用处。

熔化温度不同的聚合物有利的另一领域是生产所谓的绳绒簇绒绳领 域。生产这些合成聚合物类材料依赖于熔点较高材料的挤出纤维(一般为2 至3种纤维)。然后将这些熔点较高的纤维进行机械加捻并加热得到恒定 捻度的纤维。接着将额外的经或纬纤维拉伸经过来自机械加捻的线圈。然 后将最后这些纤维的末端或线圈切除,得到纤维、纤维束、簇绒或“割绒 或管形清洁器”外观。切割操作后,将纤维、纤维束或纱线通过加热导辊, 该加热导辊在理论上会使纤维束或纱线中的熔点较低的纤维软化或接近其 熔点,理论上使切断纤维基本上在其横向与纤维束、绳或纱线中的机械加 捻纤维的剩余部分粘合。然而,它们一般存在两个缺点中的至少一个。缺 点之一是成本,例如在聚烯烃绳绒线生产操作中挤出聚酰胺或聚酯时,纤 维束纱线或织物的成本受到非聚烯烃成本的不利影响。另一方面,当使用 低成本材料,如聚乙烯和乙烯共聚物或甚至丙烯共聚物(高乙烯含量, Ziegler-Natta)时,它们在工业速度下常常缺乏纺丝制成可接受的纤维的 性能。

因此,需要一种能够被纺丝或挤出制成纤维并且相对于可买到的丙烯 聚合物具有低熔点或软化点的聚烯烃,特别是丙烯共聚物。

已发现,在金属茂催化剂体系存在下生产的丙烯均聚物和共聚物与常 规(Ziegler-Natta催化的)均聚物或共聚物相比具有较低的峰熔点温度。

这种金属茂催化的丙烯聚合物的低熔点性能可有利地用于多方面。纺 粘-熔喷织物(SM)当用作S织物,另一层用作M织物时,可通过使用较低 熔点或软化点的一种聚合物将其相互粘结。然而,其它组合也是可行的, 例如可将高熔点纤维加入具有较小直径纤维的熔喷织物中,同时将较低熔 点的聚合物形成纺粘织物。两种聚合物之间的熔点差和/或其相对直径厚度 的组合可使这两层粘结,得到强度相对高、相对不渗透流体的织物。

另一可能组合的扩展未预料到当与丙烯和乙烯或丁烯的共聚物(都是 金属茂催化的)的熔点下降相比时,高级α-烯烃(HAO)共聚单体(5-20个 碳原子)也具有熔点下降效果。

其它组合,例如绳绒纤维绳和芯皮型纤维也将受益于可从本发明方案 的聚合物和聚合物制得的纤维得到的较低粘结温度和/或加工温度。

因此,可以看出由本发明实施方案的聚合物制备的制品特别适用于较 低软化点或熔点差重要的用途和方法中。

本发明的这些特点和其它特点、见解和优点将通过下面的描述、所附权 利要求和附图更好地理解,其中图1表示在丙烯α-烯烃共聚物中加入的共 聚单体产生的熔点下降效果。

本发明涉及一些制备的聚丙烯制品、它们的生产方法和用途。这些制 品具有独特的性能,因此特别适合用于某些领域。本发明中制备的纤维、 织物和制品使用金属茂催化的丙烯均聚物和丙烯α-烯烃共聚物,所述均聚 物和共聚物可通过常规纤维纺丝板纺丝或挤出,然后制成纤维、纱线、织 物或其组合。此外,聚合物可直接挤出制成织物。本发明实施方案的聚合 物可呈现低于其它聚烯烃纤维(它们可结合入纱线或织物中,这种纱线或 织物通常由聚丙烯均聚物或聚丙烯共聚物组成)的熔点。下面详细描述本 发明范围内用于制备制品的某些优选的树脂,及生产这些树脂和它们的产 品的优选方法。

本领域熟练技术人员将认识到可对这些优选实施方案进行各种变化而 不超出本发明范围。例如,纤维、纱线和织物的所有这些性能用于举例说 明聚合物的性质,这些聚合物还具有其它很多用途。对于我们具体描述的 内容,只是起到说明本发明优选实施方案的目的,而不应将本发明限制在 这些实施方案上。

这里术语无规或统计共聚物是指丙烯与其它α-烯烃在介质中聚合的共 聚物,其中在反应其间各种共聚单体和其它制备条件保持不变。在这里的 定义中,因催化剂中存在化学性质不同的位置或因顺序反应器中经历的变 化引起的所得共聚物的组成变化是可接受的,只要得到的“反应器共混” 聚合物在熔体中混溶即可。

我们已发现,某些金属茂催化剂体系可用于聚合具有转化为各种产品 特别需要的性能的丙烯统计树脂。这些树脂一般为全同立构聚丙烯统计共 聚物和均聚物,共聚物使用丙烯和一种或多种α-烯烃。对于本发明,全同 立构是指通过核磁共振(NMR)测定丙烯立构规整度分布大于90% mmmm五价基(pemtad)、优选94至98%mmmm五价基、最优选95至 97%mmmm五价基的聚合物,其中m为中间二价基(meso diad)(m定 义为两个连续单体单元(二价基)的甲基基团相互之间相同的相对构型)。 生产树脂

本发明的聚丙烯均聚物或共聚物一般使用载体金属茂催化剂生产。共 聚物可在流化床或搅拌床气相反应器、罐或环形管式淤浆或本体液体反应 器中生产。串联的(优选两个)本体沸腾液体槽丙烯反应器是优选的。

用于生产全同立构烯烃聚合物的具体金属茂型催化剂是已知的,并可 在例如Winter等人的EP A 485820、EP A 485 821、EP A 485 822、 EP A 485 823和Welborn的US5,017,867中到。这些公开文献作为美国 专利实践的参考引入。

很多公开文献描述了将催化剂体系载在载体介质上并使用制得的载体 催化剂。这些文献包括Chang的US5,006,500、4,925,821、4,937,217、 4,953,397、5,086,025、4,912,075和4,937,301及Welborn的US 4,808,561、4,897,455、5,077,255、5,124,418和4,701,432。所有这些公 开文献作为美国专利实践的参考引入本申请。

用于制备丙烯α-烯烃聚合物使用的金属茂催化剂载体技术的具体信息 可在Burkhardt的US5,240,894(同样作为美国专利实践的参考引入)中 到。虽然下列实施例所用的催化剂在本体液相聚合中使用,但工业上, 可以使用其它方法,例如气相和淤浆法。

正如上面参考文献中所述的,这些方法和催化剂可用于将按共聚物总 摩尔数计的0.2至6mol%的α-烯烃共聚单体加入丙烯共聚物中。若大于6 mol%,则制得的树脂将使纤维取向薄膜对于很多优选用途熔点太低。在优 选的实施方案中,α-烯烃共聚单体的用量范围为0.5至3mol%。在最优选 的实施方案中,α-烯烃共聚单体的用量范围为1至3mol%。

在一个优选的实施方案中,催化剂体系包括硅桥连的双(取代2-甲基- 茚基)二氯化锆或其衍生物、甲基铝氧烷和无机载体。在另一优选的实施方 案中,选用的金属茂是二甲基甲硅烷基双(2-甲基-苯并茚基)二氯化锆。后一 优选的催化剂体系用于生产薄膜中使用的丙烯-乙烯和丙烯-己烯树脂,树脂 的性能在表I中给出。薄膜数据是聚合物性能如熔点的粗略显示,并且对于 纤维和织物的性能也有所体现。然而,可用这些和类似催化剂体系共聚大 多数2至20个碳原子的α-烯烃。除铝氧烷外,可以考虑其它活化剂。

制备催化剂体系和生产树脂的进一步详细描述在下面的实施例中提 供。 树脂特性

在优选的实施方案中,这些聚合物本身基本上是全同立构的。聚合物 一般具有窄分子量分布(MWD)或Mw/Mn(重均分子量/数均分子量)≤5, 优选≤3.5,更优选≤3,最优选≤2.2。这些MWD在反应器中(一般不是 在后面的反应阶段中)达到。聚合物显示的熔点范围为100℃至145℃, 更优选110℃至135℃,最优选110℃至130℃。

本发明聚合物可用的熔体流动速率范围为0.1至5,000dg/min。在纺粘 用途的优选实施方案中,熔体流动速率范围为0.1至100dg/min。在最优 选的实施方案中(对于纺粘型纤维),熔体流动速率范围为10至100 dg/min。在熔喷型织物的优选实施方案中,熔体流动速率范围为1000至 2500dg/min。熔体流动速率按照ASTM D-1238规则L测定。

树脂或由树脂制备的制品除了上述特性外,降低的峰熔点和降低的熔 化点以及耐冷流动、较好的韧度、较好的机械性能和较大的柔软度都是产 品的重要特性。 由树脂制备的制品

已发现,在金属茂催化剂体系存在下制备的丙烯聚合物在为取得实用性 而主要依赖于两种或多种聚合物的熔点温度差(ΔTm)的应用中提供了令 人吃惊的优点。

在纤维和织物的广泛领域中特别依赖于ΔTm,并且本发明实施方案纤 维和织物将到用途。

在本发明优选的实施方案中,绳绒簇绒绳,芯皮纤维,纺粘-熔喷 (SM)和纺粘-熔喷-纺粘(SMS)型纤维和织物都包括金属茂催化的丙 烯聚合物。在所有这些用途中,都可有利地使用这些金属茂催化的均聚物 或丙烯与α-烯烃(对于本申请,包括乙烯和4-20个碳原子的α-烯烃)的共 聚物。为了在不破坏织物的完整性(破洞)下实现粘结,要求ΔTm足够大 或一种织物的粘结温度相对于其它织物的软化点温度足够低是特别正确 的。这可在惯用于粘结SM或SMS型织物的工艺中充分说明。人们知道, 适用的SMS层压制品要使用熔喷纤维中心或芯层,工业上该层通常为常规 聚丙烯均聚物。人们还知道使用的纺粘(S)型织物由常规丙烯-乙烯无规 共聚物制备,其中乙烯存在量按聚合物总重量计为3wt%。这种织物结构 一般比本发明实施方案中公开的织物强度差。这是由于通常需要较高的粘 结温度。

典型结构的树脂熔点分布为:

    S    144℃

    M    161℃

    S    144℃

当将此结构进行加热层压或压延时,希望外层变软/熔化以提供粘结 力,但事实上这可能不会发生。极细的(直径小)的M层纤维使其在S层 之前软化,并在S层的纤维软化或熔化之前与S层的纤维粘结。

因较低软化点和/或熔点带来的较低粘结温度特别适用于纺粘-熔喷 (SM)或纺粘-熔喷-纺粘(SMS)织物结构,可使粘结后基本上在熔喷 层中无烧穿。纤维直径对粘结温度也有影响。

本发明实施方案中公开的纤维和织物的优点可在多种可能的组合中取 得。这些组合包括但不限于:

a)SM或SMS织物或含这些织物的组合。这些组合包括热层压(压延) 和粘合剂或胶粘剂层压织物;

b)绳绒簇绒绳;和

c)芯皮纤维。

这些新型丙烯聚合物可使本领域熟练技术人员使用峰熔点温度Tm(通 过差示扫描量热法(DSC)时测量,相对于其它聚合物峰熔点)以制备适用且 新颖的制品。

两个重要的数据是ΔTm和TB。ΔTm就是直接测量的两种聚合物的熔点 差。聚合物的粘结温度TB一般为其软化点与熔点之间的温度,其中该聚合 物与另一种纤维形成(机械或物理)粘结力,所述其它纤维可以是聚合物 或非聚合物纤维。能够粘结各种纤维或织物组合是基本的。本领域熟练技 术人员将知道可在下面的宽范围熔化温度下组合,还将知道聚合物可生产 纤维的性能也是重要的

              表A

典型的熔点Tm

    树脂                  Tm

常规Z-N PP(均聚物)        161

常规Z-N RCP(无规共聚物)

        3(乙烯wt%)       144

        5(乙烯wt%)       133

金属茂PP(均聚物)          145

金属茂RCP 3(乙烯wt%)     124

      RCP 5(乙烯wt%)     109

          3(己烯wt%)     124

          5(己烯wt%)     110

上面的典型熔点是“纯”的或无影响熔点的添加剂或共混组分的聚合 物的熔点。

以下是SMS或SMS实施方案的一些可能的组合。

1)SM或SMS织物,其中纺粘型织物由具有较低Tm或比熔喷织物低 的粘结温度的材料制备。这些组合包括但不限于:

1)M=常规(Ziegler-Natta催化的)聚丙烯均聚物

  S=丙烯共聚物(金属茂催化的)

2)M=常规共聚物

  S=金属茂催化的共聚物

3)M=金属茂催化的共聚物

  S=金属茂催化的共聚物

4)M=金属茂催化的共聚物

  S=常规共聚物

5)M=常规共聚物

  S=金属茂催化的均聚物

6)M=金属茂催化的均聚物

  S=金属茂催化的共聚物

7)M=常规均聚物

  S=金属茂催化的共聚物。

本领域熟练技术人员可利用已知的原理,与用较粗(较高纤度)纤维 形成的纺粘织物比,用较细(较低)纤度纤维形成的熔喷织物达到相对低 的流体渗透性和较低的粘结温度,得到所需强度的流体不渗透织物。至少 组合这些织物的两种工艺是可行的。

a)热层压(压延)

b)粘合剂或胶粘剂层压。

在这些或其它实施方案中,本领域熟练技术人员知道可将添加剂和共 混组分加入本申请讨论的聚合物中。这些添加物可以影响(例如)物理性 能。同时也考虑了这些添加物。 热层压

为制备有效的热层压结构(例如SM或SMS),必须达到最小的粘结 温度差以防止破洞。热粘结织物可通过多种工艺制备。这些工艺包括(但 不限于):点粘结压延、棒式封焊、夹辊、射频、热空气和超声波热合机。 表A中公开的熔点可使本领域熟练技术人员从其中选取可得到的均聚物和 共聚物以实现可行的层压。 粘合剂层压

使用低熔点(相对于S和M层的粘结温度)纤维或聚合物熔体作为粘 合剂,粘合剂可以是被喷涂、共挤出或分布在S和M之间形成的层中和必 要时随后层压的非织造织物、纤维或薄膜。在一方面常规丙烯均聚物 (Ziegler-Natta催化的)(高熔点~161℃)与另一方面高共聚单体含量(高 级α-烯烃)(低熔点~121℃)丙烯共聚物(用金属茂催化剂催化的)之间 宽的熔点和软化点差值内,本领域熟练技术人员可在宽范围内选择形成纤 维的聚合物。

由金属茂催化的均聚物和共聚物制备的制品特别适用于这些制品,原 因在于这些丙烯聚合物具有较低的峰熔点。 制备取向纤维和织物

在本发明的实施方案中,新纤维可通过由熔融聚合物形成纤维的任何 方法(包括惯用的纤维和纱线的熔体纺丝及纺粘和熔喷法)形成,或通过 非惯用的方法(包括离心式纺丝、片材纵切和薄膜原纤化)形成。

本发明的织物比由Ziegler-Natta催化剂体系催化的聚合物或聚合物混 合物制备的类似织物强度高。此外还考虑了通过其它热塑性聚合物与金属 茂催化的丙烯聚合物共混制备的纤维和/或使用各种添加剂,包括颜料、抗 静电剂、抗氧剂或其它添加剂制备的纤维。这些韧性较好、强度较高、耐 蠕变、低熔点的纤维和由其制备的织物可用于生产纺织品如针织织物和非 织造织物,特别是通过任意分散、纺粘、熔喷和本领域熟练技术人员显而 易见的其它工艺制备SMS、针织织物、短纤维、单丝、纤维、非织造织物。

同样考虑的利用本发明方案的聚合物制备的适用产品是并列型纤维挤 出物,其中一种纤维是由任何合适树脂制备的高熔点材料,第二种纤维是 本发明实施方案的低熔点材料。考虑的另一种产品是芯皮挤出物,其中芯 层为聚合物形成的较高熔点纤维,皮层为本发明方案的金属茂催化的丙烯 共聚物形成的低熔点纤维。这种双纤维束或皮芯纤维在单层非织造织物中 呈现极好的性能。这些性能通过对织物施加足够的热(但不足以熔化或使 整个织物或纤维变形)软化并粘结较低熔点的组分得到。熔点较低组分的 软化或熔化可提供结合点以提高单层织物的强度。这种织物与其本身或与 其它织物或非织造织物的层压制品也是设想的。 实施例1 制备金属茂催化剂

按照US5,240,894的教导,用(例如)Organometallic,V.13,No.3,1994, p954-963中公开的二甲基甲硅烷基双(2-甲基-4,5-苯并茚基)二氯化锆作 为金属茂制备二氧化硅载体金属茂催化剂。该催化剂的配方为400g二氧化 硅(Davison948)、10g金属茂和3升MAO的10wt%甲苯溶液。回收到 约600g最终催化剂体系。在15℃下对于每单位重量的催化剂体系用1重 量份的乙烯将此催化剂预聚。乙烯在1.5小时内加入以确保慢反应速率。 实施例2 制备丙烯-乙烯共聚物

将约15g乙烯和550g丙烯加入保持30℃的高压釜中。经过一段时间 达到平衡后,将0.2g实施例1的预聚催化剂加入反应器中并在几分钟内将 温度升至50℃。观察到立即开始反应。30分钟后终止反应以限制乙烯的 转化程度使乙烯在反应介质中的浓度在反应期间基本不变。制得总计114g 丙烯-乙烯统计共聚物。重均分子量通过粒度排阻谱法测量为184,000, 其乙烯含量(用FTIR测量)为3.3wt%,峰熔点温度为121℃。 实施例3 制备丙烯-己烯共聚物

向实施例2的高压釜中加入550g丙烯和34g己烯-1。加入实施例1 的催化剂(0.2g)并按实施例2控制温度。在此情况下由于丙烯和己烯-1的 相对反应性在这些条件下几乎相同,所以使反应总共进行2小时。制得总 计222g丙烯-己烯统计共聚物。重均分子量通过粒度排阻谱法测量为 204,000,其己烯-1含量(用FTIR测量)为2.9wt%,峰熔点温度为126 ℃。 实施例4(预期例) 制备丙烯1-辛烯共聚物

向实施例2的高压釜中加入550g丙烯和45g1-辛烯(摩尔量与实施 例3相同)。加入实施例1的催化剂并按实施例2控制温度。由于丙烯和 1-辛烯的反应性在这些条件下几乎相同,所以使反应总共进行2-3小时。可 制得总计200g丙烯-辛烯统计共聚物。重均分子量通过粒度排阻谱法测 量为200,000,其1-辛烯含量(用FTIR测量)为4wt%,峰熔点温度为 125-130℃。 实施例5 (预期例) 生产纤维 纤维和织物形成实施例

纺丝后,通过机械卷取纤维束使纱线部分取向(POY),或通过在由 其挤出的熔体进行POY纺丝后机械拉伸使纱线充分取向,制备纤维。这在 由J.J.Jenkins,Inc.(Stalling,NC)组装的纤维生产线上完成。该生产线由5 cm(2英寸)Davis标准挤出机(其长度/直径比为30∶1)和6cc/rev Zenith 计量泵组成,该计量泵强制熔融聚合物通过0.6mm和长/径比1.2的72孔 喷丝板。计量泵的速率为10rpm,产生的原料通过量为0.625g/孔/分钟。

由235℃(450°F)的熔体通过未加热轴向纺丝导辊以速率2000m/min 拉伸纤维。纤维束(以各速率下收集的总旦尼尔/总长丝数表示)为203/72。 通过Leeson络筒机按每5分钟生产量的特征收集纤维束。

纤维束的强度(g/旦尼尔)和伸长量通过在Instron上拉至断裂测量。纤 维测试在Instron机(Model 1122,连接有支持用于材料测试的Sintech Sima(testwork II~)计算系统的Instron计算机)上进行。用Instron Pneumatic Cord和Yarn Grip(model 2714)夹持样品。将具有2.5cm(1英 寸)规格(gauge)和0.1g预荷载的样品以500mm/min的速率拉至断裂。 断裂灵敏度为95%拉力降。

由22和100MFR聚丙烯共聚物进行熔体纺丝制备纤维。这些材料是由 前面描述的金属茂型催化剂生产的。将由传统催化剂催化的含3%乙烯(将 其进行控制流变处理(后反应器氧化降解))、具有33MFR的聚丙烯无规 共聚物(Exxon Chemical,PD-9355)进行纺丝并用作对比。结果通过对 这些以2000m/min的接收速率纺丝的纤维进行强度和伸长测试获得。 实施例6-9(预期例) 纺粘步骤

在由Reifenhauser GMBH of Troisdorf,Germany制造的一米 Reicofil Spunbond生产线上制备多层SM织物的纺粘非织造织物层。 Reicofil使用长径比30∶1的7cm(2.75英寸)挤出机。使用3719孔喷丝板, 每个孔的直径为0.4,L/D=4/1。

纺粘方法是本领域公知的织物生产方法。通常,将连续纤维挤出、放 置在循环皮带上、然后通过加热压延辊或加入粘合剂使其相互粘结并与第 二层如熔喷层粘结。纺粘法的综述可从下面的文献中得到,L.C. Wadsworth和B.C.Goswami,Nonwoven Fabrics:“Spunbonded and Melt Blown Processes”,会刊Eight Annual Nonwovens Workshop,1990 年7月30日-8月3日,主办者:TANDEC,University of Tennessee, Knoxville,TN。

在下面的预期实施例中,制备17g/m2(0.50oz/yd2)的纺粘层。加工条 件为用于Reicofil操作中的典型条件。它们包括400°F(205℃)的模头熔化 温度,45-50°F(6-10℃)冷却空气温度和21m/min皮带速度。 熔喷步骤

使用由Hillside,NJ的Accuweb熔喷系统组装的51cm(20英寸)精密 产品熔喷生产线制备熔喷织物层。挤出机为长径比为30∶1的5cm(2英寸) Davis标准挤出机。模头喷嘴具有501个模孔。每个孔的直径为0.4mm (0.15英寸)。模头长度为15∶1,空气缝隙设定为0.15mm(0.060英寸)。 制备的熔喷织物层具有的重量为30g/m2(0.88oz/yd2)。

代表性加工条件包括聚合物熔体温度为500°F(260℃),空气温度为 500°F(260℃)。

制备熔喷织物的工艺在非织造织物生产领域也是公知的。此加工方法 的综述可从“Melt Blown Process”,Melt Blown Technology Today, Miller Freeman Publication,Inc.San Franciso,CA,1989,pp7-12中获 得。 最佳粘结温度测定

最佳粘结温度(OBT)通过测定热粘结曲线发现。OBT是提供层压 非织造织物峰粘结强度的点粘结压延温度。按两个步骤测定热粘结曲线和 OBT。

1.将未粘结的织物层压制品通过逐渐加热的压延辊缝隙。将辊以 5°F(~2.8℃)的增加量在温度200°F(94℃)至300°F(150℃)之间加热。制 备在不同温度下粘结的一系列样品。

2.按ASTM D 1682-64(1975年重新批准)测量纵向(MD)和横 向(TD)拉伸强度。粘结曲线是压延温度和在MD和TD中的峰强度的 比较图。

比较粘结曲线上粘结温度和峰粘结强度可确定OBT。 对比树脂

在下面的实施例中,将市售的熔体流动速率为35dg/min的控制流变的 聚丙烯用于制备对比纺粘织物。具体的聚合物是购自Exxon Chemical Company,Houston,TX的PP-3445。

对比熔喷织物也由购自Exxon Chemical Company的PD3435G制备。 PD3435G是过氧化物涂覆的聚丙烯粒料,其熔体流动速率为1100 dg/min。 用金属茂催化剂制备的共聚物制备SM织物层压制品(预期例)

制备由纺粘层(S)和熔喷层(M)组成的未粘结双层(SM)对比织物。将由 市售的1100熔体流动速率的聚丙烯制备的M层直接挤出于S层织物上。 后者由市售的35熔体流动速率的聚丙烯制备。然后通过用加热压延辊点粘 结对比织物估算双层织物的OBT,最后绘出并分析热粘结曲线。

制备另一些未粘结的SM织物。这些织物分别含有实施例2、3和4的 聚合物的第二个熔喷层(10g/m2或0.30oz/yd2),并在市售聚丙烯形成的 S层和M层之间挤出。估算这些织物的OBT,结果在表B中给出。

                               表B

 实施例   本发明聚合物 最佳粘结温度(℃)   预期强度、阻挡和过滤性能

  对比       无     143            良好

    6 丙烯-乙烯共聚物     98            优良

    7 丙烯-己烯-1-共聚物     105            优良

    8 丙烯-1-辛烯共聚物     110            优良

从表B中看出,本发明实施例的OBT在温度低于市售对比例下粘结。 预期本发明的聚合物具有优良的阻挡和过滤性能,原因在于OBT非常低, 不会损害熔喷层的热敏性低的原纤维。此外,由于实施例6至8中的纺粘 层是市售的35熔体流动速率的聚丙烯,因此织物的整体强度与对比例一样 高。 制备含有一层由金属茂催化剂制备的聚丙烯层的SM织物(预期例)

如上所述,制备市售的35熔体流动速率的聚丙烯(S层)和市售1100mfr 聚丙烯的对比SM层压织物并估算其OBT。

制备另外的SM层压织物。这种织物的S层是由实施例5的聚丙烯制 备的。然后加入市售1100熔体流动速率的聚丙烯的熔喷M层即制得这种 织物。如前所述估算织物的OBT。结果概列于表C中。

                            表C

 实施例 本发明聚合物 最佳粘结温度(℃) 预期强度、阻挡和过滤性能

  对比     无     143           良好

    9     聚丙烯     132           优良

本文发布于:2024-09-25 05:27:58,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/71808.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议