镀锌钢板、构件和它们的制造方法与流程



1.本发明涉及高强度且碰撞特性优良的镀锌钢板、构件和它们的制造方法。本发明的镀锌钢板能够适合用于主要作为汽车用钢板的用途。


背景技术:



2.从保护地球环境的观点考虑,为了削减co2排放量,在维持汽车车身的强度的同时谋求其轻量化,改善汽车的燃料效率在汽车业界经常成为重要的课题。为了在维持汽车车身的强度的同时谋求其轻量化,通过作为汽车部件用原材的钢板的高强度化来使钢板薄壁化是有效的。另一方面,以钢板作为原材的汽车部件在碰撞时确保车内人员的安全成为前提。因此,对于作为汽车部件用原材使用的高强度镀锌钢板,除了要求具有期望的强度以外,还要求优良的碰撞特性。
3.近年来,在汽车车身中拉伸强度ts为980mpa以上的高强度镀锌钢板的应用不断扩大。从碰撞特性的观点考虑,汽车部件大致分为中柱、保险杠等非变形构件和侧梁等能量吸收构件,为了在汽车走行中万一碰撞的情况下确保乘员的安全,分别要求必要的碰撞特性。非变形构件中,高强度化在发展,拉伸强度(以下也简称为ts)为980mpa以上的高强度镀锌钢板已经实用化。但是,在能量吸收构件中,高强度化没有在发展,实用化钢的强度水平在ts为590mpa级左右以下。作为能量吸收构件的高强度化未发展的理由,可以列举:高强度镀锌钢板在碰撞时受到基于成形的一次加工的部位成为起点而容易引起构件断裂,存在不能稳定地发挥碰撞能吸收能力的问题。因此,还有通过抑制碰撞时的构件断裂、稳定地发挥高吸收能来确保碰撞时的安全性、并且通过轻量化来有助于环境保护的余地。基于以上情况,能量吸收构件需要应用碰撞特性优良的ts为590mpa以上的高强度镀锌钢板。
4.针对这样的要求,例如,专利文献1中公开了涉及成形性和耐冲击性优良的ts为1200mpa级的超高强度镀锌钢板的技术。另外,专利文献2中公开了涉及拉伸最大强度780mpa以上、能够应用于碰撞时的冲击吸收构件的高强度镀锌钢板的技术。
5.现有技术文献
6.专利文献
7.专利文献1:日本特开2012-31462号公报
8.专利文献2:日本特开2015-175061号公报


技术实现要素:



9.发明所要解决的问题
10.但是,专利文献1中,虽然研究了碰撞特性,但是,对于以碰撞时不发生构件的断裂为前提的耐冲击性进行了研究,没有从耐构件断裂的观点考虑对碰撞特性进行研究。
11.另外,专利文献2中,对帽材进行利用落锤的动态轴压坏试验的裂纹判定,对ts超过780mpa的级别的耐断裂特性进行评价。但是,压坏后的裂纹判定中,无法对从对碰撞特性重要的压坏中的裂纹发生起至断裂为止的过程进行评价。其理由在于,在压坏的过程中早
期发生裂纹的情况下,即使是不贯通板厚的程度的轻微裂纹,也有可能使吸收能降低。另外,在压坏的过程中的后期发生裂纹的情况下,即使是贯通板厚的程度的严重裂纹,也可能几乎不影响吸收能。因此认为,仅凭压坏后的裂纹判定来作为耐断裂特性的评价是不充分的。
12.本发明是鉴于上述情况而完成的,目的在于提供适合作为汽车的能量吸收构件用途的、拉伸强度(ts)为590mpa以上、碰撞特性优良的镀锌钢板、构件和它们的制造方法。
13.用于解决问题的方法
14.本发明人为了解决上述课题而反复进行了深入研究,结果发现了以下内容。
15.使镀锌钢板具备钢板以及在钢板表面上的镀锌层,所述钢板具有碳当量ceq满足0.35%以上且小于0.60%的成分组成、以及以面积率计铁素体为40~80%、回火马氏体和贝氏体的合计为15~55%、残余奥氏体为3~20%、新鲜马氏体为10%以下、铁素体、回火马氏体、贝氏体、残余奥氏体和新鲜马氏体的合计为90%以上的钢组织。另外,该镀锌钢板中,残余奥氏体中的固溶c量为0.6质量%以上,全部残余奥氏体晶粒中长径比小于2.0的残余奥氏体晶粒的比例为50%以上,进行规定的90
°
弯曲加工时,在压缩侧的距钢板表面0~50μm区域内的l截面中,孔隙数密度为1000个/mm2以下。由此可知,可以得到高强度、碰撞特性优良的钢板。
16.本发明是基于这样的见解而完成的,其主旨如下所述。
17.[1]一种镀锌钢板,其具备钢板以及在上述钢板表面上的镀锌层,
[0018]
所述钢板具有碳当量ceq满足0.35%以上且小于0.60%的成分组成、以及以面积率计铁素体为40~80%、回火马氏体和贝氏体的合计为15~55%、残余奥氏体为3~20%、新鲜马氏体为10%以下、铁素体、回火马氏体、贝氏体、残余奥氏体和新鲜马氏体的合计为90%以上的钢组织,
[0019]
上述残余奥氏体中的固溶c量为0.6质量%以上,
[0020]
全部残余奥氏体晶粒中长径比小于2.0的残余奥氏体晶粒的比例为50%以上,
[0021]
在曲率半径/板厚为4.2的条件下以宽度(c)方向为轴沿轧制(l)方向进行90
°
弯曲加工时,在压缩侧的距钢板表面0~50μm区域内的l截面中,孔隙数密度为1000个/mm2以下,
[0022]
拉伸强度为590mpa以上。
[0023]
[2]如[1]所述的镀锌钢板,其中,上述成分组成以质量%计含有c:0.03~0.20%、si:0.10~2.00%、mn:0.5~2.5%、p:0.05%以下、s:0.05%以下、sol.al:0.005~0.100%和n:0.010%以下,余量由fe和不可避免的杂质构成。
[0024]
[3]如[2]所述的镀锌钢板,其中,上述成分组成以质量%计还含有选自cr:1.0%以下、mo:0.5%以下、v:0.5%以下、ti:0.5%以下、nb:0.5%以下、b:0.005%以下、ni:1.0%以下、cu:1.0%以下、sb:1.0%以下、sn:1.0%以下、ca:0.005%以下和rem:0.005%以下中的至少一种。
[0025]
[4]如[1]~[3]中任一项所述的镀锌钢板,其中,上述镀锌层为电镀锌层、热镀锌层或合金化热镀锌层。
[0026]
[5]一种构件,其是通过对[1]~[4]中任一项所述的镀锌钢板实施成形加工和焊接中的至少一者而形成的。
[0027]
[6]一种镀锌钢板的制造方法,其具有:
[0028]
将碳当量ceq满足0.35%以上且小于0.60%并且具有[2]或[3]所述的成分组成的钢坯在精轧温度为850~950℃的条件下实施热轧、在600℃以下的卷取温度下进行卷取的热轧工序;
[0029]
将上述热轧工序后的热轧钢板以大于20%的压下率进行冷轧的冷轧工序;
[0030]
将上述冷轧工序后的冷轧钢板加热至720~860℃的退火温度并保持30秒以上的退火工序;
[0031]
在上述退火工序后冷却至300~600℃的温度范围并在该温度范围内保持10~300秒、然后对钢板表面实施镀锌处理的镀覆工序;
[0032]
在上述镀覆工序后冷却至(ms-250℃)~(ms-50℃)的冷却停止温度、然后在300~500℃的回火温度下保持20~500秒的淬火和回火工序;以及
[0033]
在上述淬火和回火工序后以20℃/s以上的平均冷却速度从上述回火温度冷却至50℃的冷却工序。
[0034]
[7]如[6]所述的镀锌钢板的制造方法,其中,上述镀锌处理为对钢板表面实施电镀锌、热镀锌或合金化热镀锌的处理。
[0035]
[8]一种构件的制造方法,其具有:对通过[6]或[7]所述的镀锌钢板的制造方法制造的镀锌钢板实施成形加工和焊接中的至少一者的工序。
[0036]
发明效果
[0037]
根据本发明,能够得到拉伸强度(ts)为590mpa以上、碰撞特性优良的镀锌钢板。对本发明的镀锌钢板实施成形加工、焊接等而得到的构件能够适合作为汽车领域中使用的能量吸收构件。
附图说明
[0038]
图1是用于说明90
°
弯曲加工(一次弯曲加工)后的钢板的图。
[0039]
图2是用于说明实施例的弯曲-正交弯曲试验中的、90
°
弯曲加工(一次弯曲加工)的图。
[0040]
图3是用于说明实施例的弯曲-正交弯曲试验中的、正交弯曲(二次弯曲加工)的图。
[0041]
图4是示出实施了90
°
弯曲加工(一次弯曲加工)的试验片的立体图。
[0042]
图5是示出实施了正交弯曲(二次弯曲加工)的试验片的立体图。
[0043]
图6是为了进行实施例的轴压坏试验而制造的、将帽型构件与钢板点焊而得到的试验用构件的主视图。
[0044]
图7是图6所示的试验用构件的立体图。
[0045]
图8是用于说明实施例的轴压坏试验的概略图。
具体实施方式
[0046]
以下对本发明的详细情况进行说明。
[0047]
本发明的镀锌钢板具备钢板以及在钢板表面上的镀锌层,所述钢板具有碳当量ceq满足0.35%以上且小于0.60%的成分组成、以及以面积率计铁素体为40~80%、回火马氏体和贝氏体的合计为15~55%、残余奥氏体为3~20%、新鲜马氏体为10%以下、铁素体、
回火马氏体、贝氏体、残余奥氏体和新鲜马氏体的合计为90%以上的钢组织。
[0048]
碳当量ceq:0.35%以上且小于0.60%
[0049]
碳当量ceq是作为钢的强度的指标将c以外的元素的影响换算为c量而得到的。通过将碳当量ceq设定为0.35%以上且小于0.60%,能够将后述的铁素体等各金属组织的面积率控制为本发明的范围内。通过将碳当量ceq设定为0.35%以上、优选0.40%以上,能够得到本发明的强度。另外,碳当量ceq为0.60%以上时,得不到本发明的碰撞特性提高的效果。因此,碳当量ceq小于0.60%,优选为0.55%以下。
[0050]
碳当量ceq可以通过下式来求出。
[0051]
碳当量ceq=[c%]+([si%]/24)+([mn%]/6)+([ni%]/40)+([cr%]/5)+([mo%]/4)+([v%]/14)
[0052]
其中,上述式中的[元素符号%]表示各元素的含量(质量%),不含有的元素设为0。
[0053]
铁素体的面积率:40~80%
[0054]
铁素体的面积率小于40%时,回火马氏体分率变得过量,碰撞特性有时降低。因此,铁素体的面积率为40%以上,优选为45%以上。另一方面,铁素体的面积率超过80%时,铁素体分率变得过量,ts有时降低。因此,铁素体的面积率为80%以下,优选75%以下。
[0055]
回火马氏体和贝氏体的合计面积率:15~55%
[0056]
回火马氏体和贝氏体在碰撞变形时抑制构件断裂并且使吸收能提高,对高强度化是有效的。回火马氏体和贝氏体的合计面积率小于15%时,ts有时降低。因此,合计面积率为15%以上,优选为20%以上。更优选为22%以上,进一步优选为24%以上。另外,回火马氏体和贝氏体的合计面积率超过55%时,碰撞特性有时降低。因此,合计面积率为55%以下,优选为50%以下。更优选为48%以下,进一步优选为46%以下。
[0057]
残余奥氏体的面积率:3~20%
[0058]
残余奥氏体使碰撞时的裂纹发生延迟,对提高碰撞特性是有效的。机制尚不明确,但认为如下。残余奥氏体在碰撞变形时通过加工硬化而使弯曲变形中的曲率半径变大,由此使弯曲部的应变分散。通过使应变分散,一次加工所引起的向孔隙生成部的应力集中被缓和,其结果是,碰撞特性提高。残余奥氏体的面积率小于3%时,得不到这样的效果。因此,残余奥氏体的面积率为3%以上,优选为5%以上。更优选为7%以上。另一方面,残余奥氏体的面积率超过20%时,由于通过加工诱发相变而生成的新鲜马氏体,有时使碰撞时的耐断裂特性降低。因此,残余奥氏体的面积率为20%以下,优选为15%以下。更优选为10%以下。
[0059]
新鲜马氏体:10%以下
[0060]
新鲜马氏体对高强度化有效。但是,容易在与软质相的晶界产生孔隙,新鲜马氏体的面积率超过10%时,有时使碰撞特性降低。因此,因此,新鲜马氏体的面积率为10%以下,优选5%以下。另外,下限没有特别限定,从确保强度的观点考虑,优选为1%以上,更优选为2%以上。
[0061]
铁素体、回火马氏体、贝氏体、残余奥氏体和新鲜马氏体的合计面积率:90%以上
[0062]
铁素体、回火马氏体、贝氏体、残余奥氏体和新鲜马氏体的合计面积率小于90%时,上述以外的相的面积率变高,难以兼顾强度和碰撞特性。上述以外的相可以列举例如珠光体、渗碳体,这些相增加时,有时在碰撞变形时成为孔隙生成的起点而使碰撞特性降低。
另外,珠光体、渗碳体增加时,强度有时降低。上述合计面积率为90%以上时,不管其余相的种类、面积率如何,都可以得到高强度和碰撞特性。合计面积率优选设定为93%以上。需要说明的是,作为上述以外的余量组织,有珠光体和渗碳体。这些余量组织的合计面积率为10%以下。优选该余量组织的合计面积率为7%以下。
[0063]
各组织的面积率是各相的面积在观察面积中所占的比例。各组织的面积率如下测定。对与轧制方向成直角地切断的钢板的板厚截面进行研磨,然后用3体积%硝酸乙醇溶液腐蚀,利用sem(扫描电子显微镜)以1500倍的倍率对板厚1/4位置拍摄3个视野,由所得到的图像数据,使用media cybernetics公司制造的image-pro求出各组织的面积率。将3个视野的面积率的平均值设定为本发明的各组织的面积率。图像数据中,如下进行区分:铁素体为黑,贝氏体为含有岛状的残余奥氏体的黑或含有取向一致的碳化物的灰,回火马氏体为含有微细的取向不一致的碳化物的亮灰,残余奥氏体为白。在此,新鲜马氏体也呈白,新鲜马氏体和残余奥氏体难以利用sem像进行区分。因此,通过从新鲜马氏体与残余奥氏体的合计的面积率中减去通过后述方法求出的残余奥氏体的面积率来求出新鲜马氏体的面积率。
[0064]
本发明中,测定x射线衍射强度,求出残余奥氏体的体积率,将该体积率视为残余奥氏体的面积率。残余奥氏体的体积率通过板厚1/4面的、fcc铁的(200)、(220)、(311)面的x射线衍射积分强度相对于bcc铁的(200)、(211)、(220)面的x射线衍射积分强度的比例来求出。
[0065]
残余奥氏体中的固溶c量:0.6质量%以上
[0066]
残余奥氏体中的固溶c量小于0.6质量%时,在碰撞变形过程中的初期的低应变区中,大量残余奥氏体相变为马氏体,在之后的变形过程中,由于通过加工诱发相变生成的新鲜马氏体,碰撞时的耐断裂特性有时降低。因此,残余奥氏体中的固溶c量为0.6质量%以上,更优选为0.7质量%以上。残余奥氏体中的固溶c量的上限没有特别限定,使c在未相变奥氏体中过度富集时,未相变奥氏体分解,残余奥氏体有时减少,因此,优选设定为1.5质量%以下。
[0067]
需要说明的是,残余奥氏体中的固溶c量可以通过如下方法测定:使用fe-epma(场发射电子探针显微分析仪),对与轧制方向成直角地切断的钢板截面的板厚1/4位置处的残余奥氏体晶粒的c量进行分析,将由分析结果得到的各残余奥氏体晶粒的c量进行平均。
[0068]
全部残余奥氏体晶粒中长径比小于2.0的残余奥氏体晶粒的比例:50%以上
[0069]
全部残余奥氏体晶粒中长径比小于2.0的残余奥氏体晶粒的比例小于50%时,碰撞特性有时降低。该理由尚不明确,但认为如下。残余奥氏体通过进行加工硬化使弯曲变形部的应变分散而提高碰撞特性,但是,在变形过程中通过加工诱发相变生成的新鲜马氏体容易成为孔隙的起点。在残余奥氏体的长径比高的加工诱发马氏体的界面生成孔隙的情况下,孔隙沿着界面急剧地粗大化,助长裂纹的进展。因此,为了在抑制裂纹的进展的同时利用残余奥氏体的应变分散能力,将全部残余奥氏体晶粒中长径比小于2.0的残余奥氏体晶粒的比例设定为50%以上。该比例更优选设定为60%以上。该比例越高越好,因此上限没有特别限定。
[0070]
残余奥氏体的长径比如下测定。对与轧制方向成直角地切断的钢板的板厚截面进行研磨,然后通过使用胶态二氧化硅溶液的抛光而使表面平滑化,用0.1体积%硝酸乙醇溶
液腐蚀,由此尽量减少试样表面的凹凸并且将加工变质层完全除去。接着,通过sem-ebsd(电子射线背散射衍射)法对板厚1/4位置进行高分辨率结晶取向分析。所得到的数据使用tsl公司制造的oim analysys来进行分析。将fcc铁作为残余奥氏体,设定为长轴/短轴=长径比。测定3个视野,分别测定(长径比小于2.0的残余奥氏体晶粒的数量)/(全部残余奥氏体晶粒的数量)。将3个视野中的测定值的平均设定为全部残余奥氏体晶粒中长径比小于2.0的残余奥氏体晶粒的比例。
[0071]
在曲率半径/板厚为4.2的条件下以宽度(c)方向为轴沿轧制(l)方向进行90
°
弯曲加工时,在压缩侧的距离钢板表面0~50μm区域内的l截面中的孔隙数密度:1000个/mm2以下
[0072]
本发明的镀锌钢板中,通过将上述孔隙数密度设定为1000个/mm2以下,可以得到高碰撞特性。该机制尚不明确,但认为如下。导致碰撞特性劣化的碰撞时的断裂中,裂纹的发生和进展成为起点。认为裂纹容易因加工硬化能的降低和高硬度差区域中的孔隙的生成和连结而发生。另外,在实际构件的碰撞中,在受到一次加工的部位,以沿着与一次加工正交的方向回弯的方式发生变形。此时,在一次加工的高硬度差区域产生孔隙时,应力在孔隙的周边集中,助长裂纹的发生和进展,其结果是导致断裂。因此,利用回火马氏体和贝氏体使高硬度差区域减少,并且根据需要有效利用残余奥氏体而在变形中抑制一次加工部的应力集中,由此抑制一次加工部的孔隙产生、进展和与此相伴的构件断裂,从而得到高耐断裂特性。因此,为了得到这些效果,将上述孔隙数密度设定为1000个/mm2以下。另外认为,上述孔隙数密度越小则越抑制轴压坏时的断裂,因此下限没有特别限定。
[0073]
需要说明的是,通过进行后述的淬火前的保持和退火后的冷却速度的控制、并且在淬火和回火工序前进行镀覆处理,可以得到期望的孔隙数密度。淬火前的保持中生成的贝氏体在镀覆工序和回火工序中被回火,发生软质化,由此抑制与软质的铁素体的界面处的孔隙生成。另外,回火工序中生成的贝氏体通过加快回火后的冷却速度而抑制冷却中的回火所引起的软化,并且通过在回火工序前进行镀覆处理而抑制镀覆处理时的回火所引起的软化,由此抑制与硬质的新鲜马氏体的界面处的孔隙生成。
[0074]
本发明中所述的孔隙数密度(个/mm2)是指,在曲率半径/板厚为4.2的条件下以宽度(c)方向为轴沿轧制(l)方向进行90
°
弯曲加工时,在压缩侧的距离钢板表面0~50μm区域内的l截面中的每1mm2的孔隙的个数。
[0075]
需要说明的是,只要满足一次弯曲加工条件则加工方法没有限制。作为一次弯曲加工方法的例子,可以列举基于v块法的弯曲加工、基于拉深成形的弯曲加工等。
[0076]
孔隙数密度的测定方法如下所述。将镀锌钢板在曲率半径/板厚为4.2的条件下以宽度(c)方向为轴沿轧制(l)方向进行90
°
弯曲加工,然后对板厚截面进行研磨,对在压缩侧的距钢板表面0~50μm区域内的l截面进行观察。利用sem(扫描电子显微镜)以1500倍的倍率对l截面拍摄3个视野,由所得到的图像数据使用media cybernetics公司制造的image-pro求出孔隙的数密度。将3个视野的数密度的平均值设定为孔隙数密度。需要说明的是,孔隙为比铁素体深的黑,可以与各组织明确区分。
[0077]
另外,关于弯曲加工后的孔隙的轧制方向上的测定位置,设定为包含通过弯曲加工形成、沿宽度(c)方向(参照图1的符号d1)延伸的角部x0的区域。更具体而言,通过弯曲加工,在宽度方向和与轧制方向垂直的方向(冲头等的按压部的按压方向)上成为最下部的区
域中,在板厚方向上0~50μm区域内(参照图1的符号xa)测定孔隙的数密度。
[0078]
本发明中,以宽度(c)方向为轴沿轧制(l)方向进行90
°
弯曲加工是指,以沿宽度(c)方向(参照图1的符号d1)观看钢板时(宽度方向钢板视角(宽度方向垂直截面视角))使两端部间距离变短的方式,沿着宽度方向和与轧制方向(参照图1的符号d1和符号d2)垂直的方向从钢板表面中的一侧实施基于按压的弯曲,在l截面中使v字形状的最下部的角度为90
°

[0079]
另外,压缩侧的钢板表面是指上述按压的一侧的钢板表面(与实施按压的冲头等的按压部接触的一侧的钢板表面)。
[0080]
另外,弯曲加工后的l截面是通过与基于弯曲加工的变形的方向平行地且与钢板表面垂直地切断而形成的截面,是指与宽度方向垂直的截面。
[0081]
本发明的镀锌钢板在钢板的表面具有镀锌层。镀锌层例如为电镀锌层、热镀锌层或合金化热镀锌层。
[0082]
本发明的镀锌钢板的拉伸强度(ts)为590mpa以上。本发明中所述的高强度是指拉伸强度(ts)为590mpa以上。拉伸强度(ts)的上限没有特别限定,从与其他特性的协调的观点考虑,优选小于980mpa。需要说明的是,关于拉伸强度(ts)的测定方法,从钢板沿着与轧制方向成直角的方向裁取jis5号拉伸试验片(jis z2201),进行应变速率为10-3
/s的依据jis z2241(2011)的规定的拉伸试验,求出拉伸强度(ts)。
[0083]
从有效地得到本发明的效果的观点考虑,本发明的镀锌钢板的板厚优选为0.2mm以上且3.2mm以下。
[0084]
本发明的镀锌钢板的碰撞特性优良。本发明中所述的碰撞特性优良是指耐断裂特性良好并且吸收能良好。本发明中所述的耐断裂特性良好是指,实施以下所述的弯曲-正交弯曲试验时的该载荷最大时的冲程的平均值δs为30mm以上。本发明中所述的碰撞特性良好是指,实施以下所述的轴压坏试验、压坏时的冲程-载荷的图中的、冲程0~100mm的范围内的面积的平均值f
ave
为35000n以上。
[0085]
上述的弯曲-正交弯曲试验如下进行。
[0086]
首先,对于钢板,在曲率半径/板厚为4.2的条件下以宽度(c)方向为轴沿轧制(l)方向实施90
°
弯曲加工(一次弯曲加工),准备试验片。90
°
弯曲加工(一次弯曲加工)中,如图2所示,向载置于具有v槽的冲模a1上的钢板压入冲头b1,得到试验片t1。接着,如图3所示,对于载置于支撑辊a2上的试验片t1,以使弯曲方向为轧制直角方向的方式,压入冲头b2而实施正交弯曲(二次弯曲加工)。图2和图3中,d1表示宽度(c)方向,d2表示轧制(l)方向。
[0087]
将对钢板实施了90
°
弯曲加工(一次弯曲加工)的试验片t1示于图4。另外,将对试验片t1实施了正交弯曲(二次弯曲加工)的试验片t2示于图5。图5的试验片t2中由虚线示出的位置与进行正交弯曲之前的图4的试验片t1中由虚线示出的位置对应。
[0088]
正交弯曲的条件如下所述。
[0089]
[正交弯曲条件]
[0090]
试验方法:辊支撑、冲头压入
[0091]
辊径:φ30mm
[0092]
冲头前端r:0.4mm
[0093]
辊间距离:(板厚
×
2)+0.5mm
[0094]
冲程速度:20mm/分钟
[0095]
试验片尺寸:60mm
×
60mm
[0096]
弯曲方向:轧制直角方向
[0097]
在实施上述正交弯曲时得到的冲程-载荷曲线中,求出载荷最大时的冲程。将实施3次上述弯曲-正交弯曲试验时的该载荷最大时的冲程的平均值设定为δs。
[0098]
另外,上述的轴压坏试验如下进行。
[0099]
轴压坏试验中,考虑到板厚的影响,全部利用板厚1.2mm的镀锌钢板来实施。将上述制造工序中得到的镀锌钢板切出,使用冲头肩半径为5.0mm、冲模肩半径为5.0mm的模具,以使深度为40mm的方式进行成形加工(弯曲加工),制作图6和图7所示的帽型构件10。另外,将作为帽型构件的原材使用的镀锌钢板另行切出成200mm
×
80mm的大小。接着,将该切出后的镀锌钢板20与帽型构件10进行点焊,制作图6和图7所示的试验用构件30。图6是将帽型构件10与镀锌钢板20进行点焊而制作的试验用构件30的主视图。图7是试验用构件30的立体图。关于点焊部40的位置,如图7所示,镀锌钢板的端部和焊接部为10mm、焊接部间为45mm的间隔。接着,如图8所示,将试验用构件30通过tig焊接与底板50接合,制作轴压坏试验用样品。接着,使撞击器60以碰撞速度10m/s等速碰撞所制作的轴压坏试验用样品,对轴压坏试验用的样品进行100mm压坏。如图8所示,压坏方向d3设定为与试验用构件30的长度方向平行的方向。求出压坏时的冲程-载荷的图中的、冲程0~100mm的范围内的面积,将进行3次试验时的该面积的平均值设定为吸收能(f
ave
)。
[0100]
接着,对构成镀锌钢板的钢板的优选成分组成进行说明。需要说明的是,表示成分元素的含量的“%”只要没有特别说明则是指“质量%”。
[0101]
c:0.03~0.20%
[0102]
c容易生成铁素体以外的相,并且与nb、ti等形成合金化合物,因此是强度提高所需的元素。c含量小于0.03%时,即使实现制造条件的最佳化,有时也无法确保期望的强度。因此,c含量优选为0.03%以上,更优选为0.05%以上。另一方面,c含量超过0.20%时,马氏体的强度过量增加,即使实现制造条件的最佳化,有时也得不到本发明的碰撞特性。因此,c含量优选为0.20%以下,更优选为0.18%以下。
[0103]
si:0.10~2.00%
[0104]
si抑制碳化物生成,因此可以得到残余奥氏体。另外,也是固溶强化元素,有助于提高强度与延展性的平衡。为了得到该效果,si含量优选为0.10%以上,更优选为0.50%以上。另一方面,si含量超过2.00%时,有时引起镀锌附着、密合性的降低和表面性状的劣化。因此,si含量优选为2.00%以下,更优选为1.50%以下。
[0105]
mn:0.5~2.5%
[0106]
mn是马氏体的生成元素,并且也是固溶强化元素。另外,有助于残余奥氏体稳定化。为了得到这些效果,mn含量优选为0.5%以上。mn含量更优选为1.0%以上。另一方面,mn含量超过2.5%时,残余奥氏体分率过量增加,碰撞特性有时降低。因此,mn含量优选为2.5%以下,更优选为2.0%以下。
[0107]
p:0.05%以下
[0108]
p是对钢的强化有效的元素。但是,p含量超过0.05%时,有时使合金化速度大幅延迟。另外,使p超过0.05%而过量含有时,由于晶界偏析而引起脆化,即使满足本发明的钢组
织,有时也会使碰撞时的耐断裂特性劣化。因此,p含量优选为0.05%以下,更优选为0.01%以下。p含量没有特别的下限,目前在工业上能够实施的下限为0.002%,优选为0.002%以上。
[0109]
s:0.05%以下
[0110]
s形成mns等夹杂物,导致顺着焊接部的金属流的裂纹的产生,即使满足本发明的钢组织,碰撞特性有时也降低。因此,s量优选尽量低,从制造成本的方面考虑,s含量优选为0.05%以下。s含量更优选为0.01%以下。s含量没有特别的下限,目前在工业上能够实施的下限为0.0002%,优选为0.0002%以上。
[0111]
sol.al:0.005~0.100%
[0112]
al作为脱氧剂发挥作用,并且也是固溶强化元素。sol.al含量小于0.005%时,有时得不到这些效果,即使满足本发明的钢组织,强度有时也降低。因此,sol.al含量优选为0.005%以上。另一方面,sol.al含量超过0.100%时,使炼钢时的钢坯品质劣化。因此,sol.al含量优选为0.100%以下,更优选为0.050%以下。
[0113]
n:0.010%以下
[0114]
n形成粗大的氮化物,因此在碰撞变形时成为孔隙生成的起点,有时使碰撞特性降低。因此,n量优选尽量少,从制造成本的方面考虑,n含量优选为0.010%以下,更优选为0.006%以下。需要说明的是,n含量的下限没有特别限定,目前在工业上能够实施的下限为0.0003%,优选为0.0003%以上。
[0115]
本发明的钢板的成分组成含有上述的成分元素作为基本成分,余量包含铁(fe)和不可避免的杂质。在此,本发明的钢板优选具有含有上述的基本成分、余量由铁(fe)和不可避免的杂质构成的成分组成。
[0116]
本发明的钢板中,可以根据期望的特性适当含有以下说明的成分(任选元素)。
[0117]
选自cr:1.0%以下、mo:0.5%以下、v:0.5%以下、ti:0.5%以下、nb:0.5%以下、b:0.005%以下、ni:1.0%以下、cu:1.0%以下、sb:1.0%以下、sn:1.0%以下、ca:0.005%以下和rem:0.005%以下中的至少一种
[0118]
cr、mo、v是提高淬透性、对钢的强化有效的元素。但是,超过cr:1.0%、mo:0.5%、v:0.5%而过量添加时,上述的效果饱和,并且原料成本增加。另外,第二相分率变得过大,有时使碰撞时的耐断裂特性劣化。因此,在含有cr、mo、v中的任意一种的情况下,cr含量优选为1.0%以下,mo含量优选为0.5%以下,v含量优选为0.5%以下。更优选cr含量为0.8%以下、mo含量为0.4%以下、v含量为0.4%以下。即使cr、mo、v的含量少也可以得到本发明的效果,因此,各自的含量的下限没有特别限定。为了更有效地得到淬透性的效果,cr、mo、v的含量分别优选为0.005%以上。更优选cr、mo、v的含量分别为0.01%以上。
[0119]
ti、nb是对钢的析出强化有效的元素。但是,ti含量、nb含量分别超过0.5%时,有时使碰撞时的耐断裂特性劣化。因此,在含有ti和nb中的任意一种的情况下,ti含量、nb含量分别优选为0.5%以下。更优选ti含量、nb含量分别为0.4%以下。即使ti、nb的含量少也可以得到本发明的效果,因此,各自的含量的下限没有特别限定。为了更有效地得到钢的析出强化的效果,ti含量、nb含量分别优选为0.005%以上。更优选ti含量、nb含量分别为0.01%以上。
[0120]
b通过抑制从奥氏体晶界起的铁素体的生成和成长而有助于淬透性的提高,因此
可以根据需要添加。但是,b含量超过0.005%时,有时使碰撞时的耐断裂特性劣化。因此,在含有b的情况下,b含量优选为0.005%以下。更优选b含量为0.004%以下。即使b含量少也可以得到本发明的效果,因此,b含量的下限没有特别限定。为了更有效地得到淬透性的提高的效果,优选将b含量设定为0.0003%以上。更优选b含量为0.0005%以上。
[0121]
ni、cu是对钢的强化有效的元素。但是,ni、cu分别超过1.0%时,有时使碰撞时的耐断裂特性劣化。因此,在含有ni、cu中的任意一种的情况下,ni、cu的含量分别优选为1.0%以下。更优选ni含量、cu含量分别为0.9%以下。即使ni、cu的含量少也可以得到本发明的效果,因此,各自的含量的下限没有特别限定。为了更有效地得到钢的强化的效果,ni含量、cu含量分别优选为0.005%以上。更优选ni含量、cu含量分别为0.01%以上。
[0122]
从抑制钢板表面的氮化、氧化、钢板表面附近的区域的脱碳的观点考虑,sn、sb可以根据需要添加。通过抑制这样的氮化、氧化,具有防止钢板表面中马氏体的生成量减少、使碰撞特性提高的效果。但是,sb、sn分别超过1.0%时,由于晶界脆化,碰撞特性有时降低。因此,在含有sb、sn中的任意一种的情况下,sb含量、sn含量分别优选为1.0%以下。更优选sb含量、sn含量分别为0.9%以下。即使sb、sn的含量少也可以得到本发明的效果,因此,各自的含量的下限没有特别限定。为了更有效地得到使碰撞特性提高的效果,sb含量、sn含量分别优选为0.005%以上。更优选sb含量、sn含量分别为0.01%以上。
[0123]
ca、rem均是通过硫化物的形态控制而对于改善加工性有效的元素。但是,ca、rem的各自的含量超过0.005%时,对钢的洁净度产生不良影响,特性可能降低。因此,在含有ca、rem中的任意一种的情况下,ca、rem的含量分别优选设定为0.005%以下。更优选ca含量、rem含量分别为0.004%以下。即使ca、rem的含量少也可以得到本发明的效果,因此,各自的含量的下限没有特别限定。为了更有效地得到加工性的改善的效果,ca、rem的含量分别优选设定为0.001%以上。更优选ca含量、rem含量分别为0.002%以上。
[0124]
另外,在后述的以小于优选下限值来含有上述任选元素的情况下,该元素作为不可避免的杂质来含有。
[0125]
以下,对本发明的镀锌钢板的制造方法的一个实施方式详细进行说明。需要说明的是,以下所示的对钢坯(钢原材)、钢板等进行加热或冷却时的温度只要没有特别说明则是指钢坯(钢原材)、钢板等的表面温度。
[0126]
本发明的镀锌钢板的制造方法具有:将具有上述成分组成的钢坯在精轧温度为850~950℃的条件下实施热轧、在600℃以下的卷取温度下进行卷取的热轧工序;将热轧工序后的热轧钢板以大于20%的压下率进行冷轧的冷轧工序;将冷轧工序后的冷轧钢板加热至720~860℃的退火温度并保持30秒以上的退火工序;在退火工序后冷却至300~600℃的温度范围并在该温度范围内保持10~300秒、然后对钢板表面实施镀锌处理的镀覆工序;在镀覆工序后冷却至(ms-250℃)~(ms-50℃)的冷却停止温度、然后在300~500℃的回火温度下保持20~500秒的淬火和回火工序;以及在淬火和回火工序后以20℃/s以上的平均冷却速度从回火温度冷却至50℃的冷却工序。另外,本发明的钢板的制造方法中使用的钢坯的成分组成满足碳当量ceq:0.35%以上且小于0.60%。碳当量ceq:0.35%以上且小于0.60%是在本发明的制造条件下用于制造本发明的钢板的最佳化的范围。
[0127]
首先,对热轧工序的各条件进行说明。
[0128]
精轧温度:850~950℃
[0129]
精轧温度低于850℃时,在轧制时发生铁素体相变,强度局部性地降低,因此,即使满足本发明的组织,有时也得不到强度。因此,精轧温度为850℃以上,优选为880℃以上。另一方面,精轧温度超过950℃时,晶粒粗大化,即使满足本发明的组织,有时也得不到强度。因此,精轧温度为950℃以下,优选为930℃以下。
[0130]
卷取温度:600℃以下
[0131]
卷取温度超过600℃时,热轧钢板中的碳化物粗大化,这样的粗大化的碳化物在退火时的均热中不会完全溶解,因此,有时无法得到所需的碰撞特性。因此,卷取温度为600℃以下,优选为580℃以下。卷取温度的下限没有特别限定,从不易产生钢板的形状不良、并且防止钢板过度硬质化的观点考虑,优选将卷取温度设定为400℃以上。
[0132]
将通过热轧工序得到的热轧钢板通过通常公知的方法进行酸洗、脱脂等预处理,然后,根据需要实施冷轧。对实施冷轧时的冷轧工序的条件进行说明。
[0133]
冷轧的压下率:大于20%
[0134]
冷轧的压下率为20%以下时,铁素体的再结晶不会被促进,未再结晶铁素体残留,有时得不到本发明的钢组织。因此,冷轧的压下率大于20%,优选为30%以上。
[0135]
接着,对将通过冷轧工序得到的冷轧钢板进行退火时的退火工序的条件进行说明。
[0136]
退火温度:720~860℃、保持时间:30秒以上
[0137]
退火温度低于720℃时,奥氏体的生成变得不充分,生成过量的铁素体,得不到本发明的钢组织。因此,退火温度为720℃以上,优选为740℃以上。另一方面,退火温度超过860℃时,无法确保本发明的铁素体分率。因此,退火温度为860℃以下,优选为840℃以下。另外,保持时间小于30秒时,奥氏体的生成变得不充分,生成过量的铁素体,得不到本发明的钢组织。因此,保持时间为30秒以上,优选为60秒以上。保持时间的上限没有特别限定,为了不损害生产率,优选将保持时间设定为600秒以下。
[0138]
接着,对镀覆工序的条件进行说明。在镀覆工序中,在退火工序后冷却至300~600℃的温度范围,在该温度范围内保持10~300秒,然后对钢板表面实施镀锌处理。
[0139]
300~600℃的温度范围内的保持时间:10~300秒
[0140]
在退火工序后冷却至300~600℃的温度范围并在300~600℃的温度范围内保持10~300秒对于得到贝氏体是有效的。另外,通过贝氏体生成而在未相变奥氏体中富集c,由此得到大量的残余奥氏体。少于10秒时,得不到这些效果。另外,超过300秒时,贝氏体过量生成,在未相变奥氏体中c过量富集,生成珠光体,有时得不到期望的残余奥氏体量。因此,保持时间为300秒以下,优选为100秒以下。
[0141]
另外,上述保持后,对钢板实施镀锌处理。镀锌处理例如是对钢板表面实施电镀锌、热镀锌或合金化热镀锌的处理。在对钢板表面实施热镀锌的情况下,例如,优选将通过上述得到的钢板在440℃以上且500℃以下的镀锌浴中浸渍而在钢板表面形成热镀锌层。在此,镀覆处理后,优选通过气体擦拭等调整镀层附着量来进行。可以对热镀锌处理后的钢板实施合金化。在对热镀锌层进行合金化的情况下,优选在450℃以上且580℃以下的温度范围内保持1秒以上且60秒以下来进行合金化。需要说明的是,在对钢板表面实施电镀锌的情况下,电镀锌处理的处理条件没有特别限定,根据常规方法即可。
[0142]
接着,对镀覆工序后进行的淬火和回火工序的各条件进行说明。
[0143]
冷却停止温度:(ms-250℃)~(ms-50℃)
[0144]
冷却停止温度超过(ms-50℃)时,回火马氏体的生成不充分,得不到本发明的钢组织。另一方面,冷却停止温度低于(ms-250℃)时,回火马氏体变得过量,残余奥氏体的生成有时变得不充分。因此,冷却停止温度为(ms-250℃)~(ms-50℃)。优选为(ms-200℃)以上。另外,优选为(ms-100℃)以下。需要说明的是,冷却停止温度满足上述的范围时,至冷却停止温度为止的冷却速度没有限定,可以得到本发明的钢组织。
[0145]
需要说明的是,ms是马氏体相变开始温度,可以通过下式求出。
[0146]
ms(℃)=539-423
×
{[c%]
×
100/(100-[α面积%])}-30
×
[mn%]-12
×
[cr%]-18
×
[ni%]-8
×
[mo%]
[0147]
上述式中,[元素符号%]表示各元素的含量(质量%),不含有的元素设为0。另外,[α面积%]为退火后的铁素体面积率(%)。退火后的铁素体面积率通过利用热膨胀测定装置模拟升温速度、退火温度和退火时的保持时间而事先求出。
[0148]
回火温度:300~500℃、保持时间:20~500秒
[0149]
回火温度低于300℃时,马氏体的回火变得不充分,在一次加工时容易在回火马氏体与铁素体的界面产生孔隙,认为碰撞特性降低。因此,回火温度为300℃以上,优选为350℃以上。另一方面,回火温度超过500℃时,马氏体和贝氏体的回火变得过量,在一次加工时容易在新鲜马氏体与回火马氏体和贝氏体的界面生成孔隙,认为碰撞特性降低。因此,回火温度为500℃以下,优选为450℃以下。另外,保持时间少于20秒时,马氏体的回火变得不充分,认为碰撞特性降低。因此,保持时间为20秒以上,优选为30秒以上。另外,保持时间超过500秒时,长径比小于2.0的残余奥氏体的比例有时减少。因此,保持时间的上限为500秒以下,优选为450秒以下。
[0150]
对淬火和回火工序后进行的冷却工序进行说明。
[0151]
从上述回火温度至50℃的平均冷却速度:20℃/s以上
[0152]
从上述回火温度至50℃的平均冷却速度小于20℃/s时,得不到本发明的碰撞特性。该理由尚不明确,但认为如下。为了抑制一次加工部的孔隙生成、提高碰撞特性,需要将软质相(铁素体)与硬质相(新鲜马氏体)的硬度差利用中间硬度相(回火马氏体、贝氏体)降低。前者通过使镀覆处理前生成的贝氏体和淬火时生成的马氏体在回火工序中软化而降低与软质相的硬度差,从而抑制孔隙的生成。后者利用回火工序中生成的贝氏体来抑制孔隙的生成。回火工序中生成的贝氏体软化时,与硬质相的硬度差变大,因此,在生成贝氏体的回火工序前进行暴露于高温的镀覆处理,进一步加快回火工序后的冷却速度,由此抑制冷却中的贝氏体的回火,由此降低与软质相的硬度差,从而抑制孔隙的生成。因此,回火工序后的至室温为止的平均冷却速度小于20℃/s时,在冷却中贝氏体被回火,与硬质相的硬度差变大,由此,在一次加工时容易在其界面生成孔隙,认为碰撞特性降低。平均冷却速度优选为25℃/s以上。平均冷却速度的上限没有特别限定,从冷却设备的节能的观点考虑,优选为70℃/s以下。
[0153]
对于本发明的镀锌钢板,可以出于形状矫正、表面粗糙度的调整等目的进行平整轧制。但是,平整轧制中,平整轧制率超过0.5%时,有时由于表层硬化而弯曲性劣化,因此优选平整轧制率为0.5%以下。更优选为0.3%以下。另外,也可以实施树脂、油脂涂层等的各种涂装处理。
[0154]
其他制造方法的条件没有特别限定,优选在以下的条件下进行。
[0155]
为了防止宏观偏析,钢坯优选通过连铸法来制造,但也可以通过铸锭法、薄板坯铸造法等来制造。另外,为了对钢坯进行热轧,可以将钢坯暂时冷却至室温、然后进行再加热来进行热轧。另外,也可以在不使钢坯冷却至室温的情况下装入加热炉中进行热轧。另外,也可以应用略微进行保热后立即进行热轧的节能工艺。在对钢坯进行加热的情况下,为了防止轧制载荷的增大、或者使碳化物溶解,优选加热至1100℃以上。另外,为了防止氧化皮损耗的增大,钢坯的加热温度优选设定为1300℃以下。
[0156]
对钢坯进行热轧时,从在降低钢坯的加热温度时防止轧制时的故障的观点考虑,也可以对粗轧后的粗棒进行加热。另外,也可以应用将粗棒彼此接合并连续地进行精轧的所谓的连续轧制工艺。另外,为了轧制载荷的减小、形状和材质的均匀化,优选在精轧的全部道次或一部分道次进行摩擦系数为0.10~0.25的润滑轧制。
[0157]
对于卷取后的钢板,可以通过酸洗等除去氧化皮。酸洗后,在上述的条件下实施冷轧、退火、镀锌。
[0158]
接着,对本发明的构件和其制造方法进行说明。
[0159]
本发明的构件是通过对本发明的镀锌钢板实施成形加工和焊接中的至少一者而形成的。另外,本发明的构件的制造方法具有对通过本发明的镀锌钢板的制造方法制造的镀锌钢板实施成形加工和焊接中的至少一者的工序。
[0160]
本发明的镀锌钢板为高强度、碰撞特性优良。因此,使用本发明的镀锌钢板得到的构件也为高强度、碰撞特性优良,不易发生碰撞变形时的构件断裂。因此,本发明的构件能够适合作为汽车部件中的能量吸收构件来使用。
[0161]
成形加工可以没有限制地使用冲压加工等一般的加工方法。另外,焊接可以没有限制地使用点焊、电弧焊等一般的焊接。
[0162]
实施例
[0163]
参考实施例对本发明具体地进行说明。本发明的范围不限于以下的实施例。
[0164]
[实施例1]
[0165]
将表1所示的成分组成的钢利用真空熔炼炉进行熔炼,进行开坯轧制而制成钢坯。对这些钢坯进行加热,在表2所示的条件下进行热轧、冷轧、退火、镀覆处理、淬火和回火、以及冷却,制造镀锌钢板。镀覆处理中,在钢板表面形成电镀锌层(eg)、热镀锌层(gi)或合金化热镀锌层(ga)。电镀锌处理中,将钢板在锌溶液中浸渍的同时进行通电,形成镀层附着量为10~100g/m2的电镀锌层(eg)。另外,热镀锌处理中,将钢板在镀浴中浸渍,形成镀层附着量为10~100g/m2的热镀锌层(gi)。另外,合金化热镀锌中,在钢板形成热镀锌层后进行合金化处理,形成合金化热镀锌层(ga)。需要说明的是,最终的各镀锌钢板的板厚为1.2mm。
[0166][0167]
[表2]
cybernetics公司制造的image-pro求出各组织的面积率。将3个视野的面积率的平均值设定为本发明的各组织的面积率。图像数据中,如下进行区分:铁素体为黑,贝氏体为含有岛状的残余奥氏体的黑或含有取向一致的碳化物的灰,回火马氏体为含有微细的取向不一致的碳化物的亮灰,残余奥氏体为白。在此,新鲜马氏体也呈白,新鲜马氏体和残余奥氏体难以利用sem像进行区分。因此,通过从新鲜马氏体与残余奥氏体的合计的面积率中减去通过后述方法求出的残余奥氏体的面积率来求出新鲜马氏体的面积率。需要说明的是,虽然表3中未示出,但余量组织通过从100%中减去铁素体(f)、贝氏体(b)、回火马氏体(tm)、新鲜马氏体(fm)和残余奥氏体(ra)的合计面积率来求出,这些余量组织判断为珠光体和/或渗碳体。
[0173]
另外,测定x射线衍射强度,求出残余奥氏体的体积率,将该体积率视为残余奥氏体的面积率。残余奥氏体的体积率通过板厚1/4面的、fcc铁的(200)、(220)、(311)面的x射线衍射积分强度相对于bcc铁的(200)、(211)、(220)面的x射线衍射积分强度的比例来求出。
[0174]
残余奥氏体中的固溶c量通过利用fe-epma(场发射电子探针显微分析仪)进行分析来测定。
[0175]
残余奥氏体的长径比如下测定。对与轧制方向成直角地切断的钢板的板厚截面进行研磨,然后通过使用胶态二氧化硅溶液的抛光而使表面平滑化,用0.1体积%硝酸乙醇溶液腐蚀,由此尽量减少试样表面的凹凸并且将加工变质层完全除去。接着,通过sem-ebsd(电子射线背散射衍射)法对板厚1/4位置进行高分辨率结晶取向分析。所得到的数据使用tsl公司制造的oim analysys来进行分析。将fcc铁作为残余奥氏体,设定为长轴/短轴=长径比。测定3个视野,分别测定(长径比小于2.0的残余奥氏体晶粒的数量)/(全部残余奥氏体晶粒的数量)。将3个视野中的测定值的平均设定为全部残余奥氏体晶粒中长径比小于2.0的残余奥氏体晶粒的比例。
[0176]
孔隙数密度的测定方法如下所述。将镀锌钢板在曲率半径/板厚为4.2的条件下以宽度(c)方向为轴沿轧制(l)方向进行90
°
弯曲加工,然后对板厚截面进行研磨,对在压缩侧的距钢板表面0~50μm区域内的l截面进行观察。利用sem(扫描电子显微镜)以1500倍的倍率对l截面拍摄3个视野,由所得到的图像数据使用media cybernetics公司制造的image-pro求出孔隙的数密度。将3个视野的数密度的平均值设定为孔隙数密度。需要说明的是,孔隙为比铁素体深的黑,可以与各组织明确区分。
[0177]
另外,关于弯曲加工后的孔隙的轧制方向上的测定位置,设定为包含通过弯曲加工形成、沿宽度(c)方向(参照图1的符号d1)延伸的角部x0的区域。更具体而言,通过弯曲加工,在宽度方向和与轧制方向垂直的方向(冲头等的按压部的按压方向)上成为最下部的区域中,在板厚方向上0~50μm区域内(参照图1的符号xa)测定孔隙的数密度。
[0178]
另外,依据以下的试验方法求出拉伸特性和碰撞特性。
[0179]
<拉伸试验>
[0180]
从所得到的各镀锌钢板沿与轧制方向成直角的方向裁取jis5号拉伸试验片(jis z2201),进行应变速率为10-3
/s的依据jis z2241(2011)的规定的拉伸试验,求出拉伸强度(ts)。需要说明的是,将ts为590mpa以上设定为合格。
[0181]
<弯曲-正交弯曲试验>
[0182]
对于所得到的钢板,在曲率半径/板厚为4.2的条件下以宽度(c)方向为轴沿轧制(l)方向实施90
°
弯曲加工(一次弯曲加工),准备试验片。90
°
弯曲加工(一次弯曲加工)中,如图2所示,向载置于具有v槽的冲模a1上的钢板压入冲头b1,得到试验片t1。接着,如图3所示,对于载置于支撑辊a2上的试验片t1,以使弯曲方向为轧制直角方向的方式,压入冲头b2而实施正交弯曲(二次弯曲加工)。图2和图3中,d1表示宽度(c)方向,d2表示轧制(l)方向。
[0183]
将对钢板实施了90
°
弯曲加工(一次弯曲加工)的试验片t1示于图4。另外,将对试验片t1实施了正交弯曲(二次弯曲加工)的试验片t2示于图5。图5的试验片t2中由虚线示出的位置与进行正交弯曲之前的图4的试验片t1中由虚线示出的位置对应。
[0184]
正交弯曲的条件如下所述。
[0185]
[正交弯曲条件]
[0186]
试验方法:辊支撑、冲头压入
[0187]
辊径:φ30mm
[0188]
冲头前端r:0.4mm
[0189]
辊间距离:(板厚
×
2)+0.5mm
[0190]
冲程速度:20mm/分钟
[0191]
试验片尺寸:60mm
×
60mm
[0192]
弯曲方向:轧制直角方向
[0193]
在实施上述正交弯曲时得到的冲程-载荷曲线中,求出载荷最大时的冲程。将实施3次上述弯曲-正交弯曲试验时的该载荷最大时的冲程的平均值设定为δs。δs为30mm以上时,评价为耐断裂特性良好。
[0194]
<轴压坏试验>
[0195]
轴压坏试验中,考虑到板厚的影响,全部利用板厚1.2mm的镀锌钢板来实施。将上述制造工序中得到的镀锌钢板切出,使用冲头肩半径为5.0mm、冲模肩半径为5.0mm的模具,以使深度为40mm的方式进行成形加工(弯曲加工),制作图6和图7所示的帽型构件10。另外,将作为帽型构件的原材使用的镀锌钢板另行切出成200mm
×
80mm的大小。接着,将该切出后的镀锌钢板20与帽型构件10进行点焊,制作图6和图7所示的试验用构件30。图6是将帽型构件10与镀锌钢板20进行点焊而制作的试验用构件30的主视图。图7是试验用构件30的立体图。关于点焊部40的位置,如图7所示,镀锌钢板的端部和焊接部为10mm、焊接部间为45mm的间隔。接着,如图8所示,将试验用构件30通过tig焊接与底板50接合,制作轴压坏试验用样品。接着,使撞击器60以碰撞速度10m/s等速碰撞所制作的轴压坏试验用样品,对轴压坏试验用的样品进行100mm压坏。如图8所示,压坏方向d3设定为与试验用构件30的长度方向平行的方向。求出压坏时的冲程-载荷的图中的、冲程0~100mm的范围内的面积,将进行3次试验时的该面积的平均值设定为吸收能(f
ave
)。f
ave
为35000n以上时,评价为吸收能良好。另外,在耐断裂特性和吸收能两者都良好的情况下,评价为碰撞特性良好。
[0196]
[表3]
[0197][0198]
v(f):铁素体的面积率、v(tm+b):回火马氏体和贝氏体的合计面积率
[0199]
v(ra):残余奥氏体的面积率、v(fm):新鲜马氏体的面积率
[0200]
v(f+ra+tm+b+fm):铁素体、回火马氏体、贝氏体、残余奥氏体和新鲜马氏体的合计面积率

1:残余奥氏体中的固溶c量
[0201]

2:全部残余奥氏体晶粒中长径比小于2.0的残余奥氏体晶粒的比例
[0202]

3:在曲率半径/板厚为4.2的条件下以宽度(c)方向为轴沿轧制(l)方向进行90
°
弯曲加工时
[0203]
在压缩侧的距钢板表面0~50μm区域内的l截面中的孔隙数密度
[0204]
发明例的镀锌钢板中,ts为590mpa以上,碰撞特性优良。另一方面,比较例的镀锌钢板中,ts小于590mpa、或者碰撞特性不良。
[0205]
[实施例2]
[0206]
通过冲压加工对实施例1的表3的no.1(本发明例)的镀锌钢板进行成形加工,制造本发明例的构件。进一步通过点焊将实施例1的表3的no.1的镀锌钢板与实施例1的表3的no.3(本发明例)的镀锌钢板接合,制造本发明例的构件。使用本发明的钢板制造的本发明例的构件的碰撞特性优良且为高强度,通过实施例1的表3的no.1(本发明例)的钢板的成形加工制造的构件、和将实施例1的表3的no.1的钢板与实施例1的表3的no.3(本发明例)的钢板进行点焊而制造的构件,可以确认全部能够适合用于汽车用骨架部件等。
[0207]
符号说明
[0208]
10
ꢀꢀ
帽型构件
[0209]
20
ꢀꢀ
镀锌钢板
[0210]
30
ꢀꢀ
试验用构件
[0211]
40
ꢀꢀ
点焊部
[0212]
50
ꢀꢀ
底板
[0213]
60
ꢀꢀ
撞击器
[0214]
a1
ꢀꢀ
模具
[0215]
a2
ꢀꢀ
支撑辊
[0216]
b1
ꢀꢀ
冲头
[0217]
b2
ꢀꢀ
冲头
[0218]
d1
ꢀꢀ
宽度(c)方向
[0219]
d2
ꢀꢀ
轧制(l)方向
[0220]
d3
ꢀꢀ
压坏方向
[0221]
t1
ꢀꢀ
试验片
[0222]
t2
ꢀꢀ
试验片
[0223]
x0
ꢀꢀ
角部
[0224]
xa
ꢀꢀ
弯曲加工后的孔隙的测定位置(测定区域)
[0225]
产业上的可利用性
[0226]
根据本发明,能够得到ts为590mpa以上、碰撞特性优良的镀锌钢板。如果将利用本发明的镀锌钢板得到的构件作为汽车用部件使用,则能够有助于汽车的轻量化、大大有助于汽车车身的高性能化。

技术特征:


1.一种镀锌钢板,其具备钢板以及在所述钢板表面上的镀锌层,所述钢板具有碳当量ceq满足0.35%以上且小于0.60%的成分组成、以及以面积率计铁素体为40~80%、回火马氏体和贝氏体的合计为15~55%、残余奥氏体为3~20%、新鲜马氏体为10%以下、铁素体、回火马氏体、贝氏体、残余奥氏体和新鲜马氏体的合计为90%以上的钢组织,所述残余奥氏体中的固溶c量为0.6质量%以上,全部残余奥氏体晶粒中长径比小于2.0的残余奥氏体晶粒的比例为50%以上,在曲率半径/板厚为4.2的条件下以宽度(c)方向为轴沿轧制(l)方向进行90
°
弯曲加工时,在压缩侧的距钢板表面0~50μm区域内的l截面中,孔隙数密度为1000个/mm2以下,所述镀锌钢板的拉伸强度为590mpa以上。2.如权利要求1所述的镀锌钢板,其中,所述成分组成以质量%计含有c:0.03~0.20%、si:0.10~2.00%、mn:0.5~2.5%、p:0.05%以下、s:0.05%以下、sol.al:0.005~0.100%和n:0.010%以下,余量由fe和不可避免的杂质构成。3.如权利要求2所述的镀锌钢板,其中,所述成分组成以质量%计还含有选自cr:1.0%以下、mo:0.5%以下、v:0.5%以下、ti:0.5%以下、nb:0.5%以下、b:0.005%以下、ni:1.0%以下、cu:1.0%以下、sb:1.0%以下、sn:1.0%以下、ca:0.005%以下和rem:0.005%以下中的至少一种。4.如权利要求1~权利要求3中任一项所述的镀锌钢板,其中,所述镀锌层为电镀锌层、热镀锌层或合金化热镀锌层。5.一种构件,其是通过对权利要求1~权利要求4中任一项所述的镀锌钢板实施成形加工和焊接中的至少一者而形成的。6.一种镀锌钢板的制造方法,其具有:将碳当量ceq满足0.35%以上且小于0.60%并且具有权利要求2或权利要求3所述的成分组成的钢坯在精轧温度为850~950℃的条件下实施热轧、在600℃以下的卷取温度下进行卷取的热轧工序;将所述热轧工序后的热轧钢板以大于20%的压下率进行冷轧的冷轧工序;将所述冷轧工序后的冷轧钢板加热至720~860℃的退火温度并保持30秒以上的退火工序;在所述退火工序后冷却至300~600℃的温度范围并在该温度范围内保持10~300秒、然后对钢板表面实施镀锌处理的镀覆工序;在所述镀覆工序后冷却至(ms-250℃)~(ms-50℃)的冷却停止温度、然后在300~500℃的回火温度下保持20~500秒的淬火和回火工序;以及在所述淬火和回火工序后以20℃/s以上的平均冷却速度从所述回火温度冷却至50℃的冷却工序。7.如权利要求6所述的镀锌钢板的制造方法,其中,所述镀锌处理是对钢板表面实施电镀锌、热镀锌或合金化热镀锌的处理。8.一种构件的制造方法,其具有:对通过权利要求6或权利要求7所述的镀锌钢板的制造方法制造的镀锌钢板实施成形加工和焊接中的至少一者的工序。

技术总结


本发明的目的在于提供拉伸强度(TS)为590MPa以上、碰撞特性优良的镀锌钢板、构件和它们的制造方法。本发明的镀锌钢板具备具有碳当量Ceq满足0.35%以上且小于0.60%的成分组成和规定的钢组织的钢板以及在钢板表面上的镀锌层,残余奥氏体中的固溶C量为0.6质量%以上,全部残余奥氏体晶粒中长径比小于2.0的残余奥氏体晶粒的比例为50%以上,在曲率半径/板厚为4.2的条件下以宽度(C)方向为轴沿轧制(L)方向进行90


技术研发人员:

小峰慎介 中垣内达也 佐藤健太郎 堺谷智宏

受保护的技术使用者:

杰富意钢铁株式会社

技术研发日:

2021.06.30

技术公布日:

2023/2/24

本文发布于:2024-09-23 04:19:21,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/61736.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:钢板   奥氏体   镀锌   残余
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议