钾离子选择性滤膜/磁性介孔纳米复合材料、荧光/磁共振双模态成像探针及应用



1.本发明涉及纳米影像探针的制备领域,具体涉及一种钾离子选择性滤膜/磁性介孔纳米复合材料、荧光/磁共振双模态成像探针应用。


背景技术:



2.长期以来,组织病理学活检一直是临床上良恶性肿瘤鉴别的金标准。然而侵入性的穿刺活检过程复杂,有可能因为取样偏差导致误诊,还有可能促进肿瘤转移,造成患者痛苦。利用医学影像学技术,包括磁共振成像、电子计算机断层扫描、超声成像等鉴别良恶性肿瘤通常是通过肿瘤结构进行诊断,比如肿瘤边界、结节形态等。这种基于肿瘤结构成像的诊断方法灵敏度和准确性有待提高。因此,发展非侵入性的、具有高灵敏度和准确性的良恶性肿瘤鉴别方法至关重要。
3.在体内正常组织中,细胞内k
+
浓度([k
+
]o)约为145mm,细胞外[k
+
]o约为3-5mm。近年来有研究表明,由于恶性肿瘤细胞增殖分裂速度快,营养物质供给不足,存在凋亡坏死区域。细胞死亡后,细胞内容物释放,导致肿瘤微环境[k
+
]o升高约5-10倍(~40mm)。然而,良性肿瘤通常不会出现细胞坏死。因此,良恶性肿瘤微环境可能存在的[k
+
]o差异有望为发展新型良恶性肿瘤鉴别方法提供思路。
[0004]
目前,k
+
微电极是监测[k
+
]o变化最常用的方法,但具有侵入性。近年来,k
+
光学传感器被广泛研究。尽管k
+
光学传感器的选择性有了显著的提高,但仍难以很好的区分开na
+
和k
+
。由于体内细胞外na
+
浓度比较高,现有k
+
传感器低的na
+
和k
+
选择性会导致细胞外na
+
干扰成像结果。同时,荧光成像技术缺乏空间分辨率,尤其在活体成像中难以进行病灶定位。磁共振成像具有非侵入性、无辐射、软组织分辨率高、空间分辨率高等优势,如果将高灵敏度的荧光成像与高空间分辨率的磁共振成像相结合,优势互补,有助于提高影像学技术对肿瘤的诊断效率。
[0005]
综上所述,利用恶性肿瘤微环境[k
+
]o变化,研发一种具有高灵敏度、高选择性、高空间分辨率的新型k
+
选择性荧光/磁共振双模态成像探针用于恶性肿瘤诊断,具有十分重要的科学研究价值和临床意义。


技术实现要素:



[0006]
本发明的目的在于提供一种钾离子选择性滤膜/磁性介孔纳米复合材料及包含该材料的荧光/磁共振双模态成像探针及应用,将高分辨率的结构磁共振成像与高灵敏度的功能性荧光成像结合。
[0007]
本发明解决上述技术问题所提供的技术方案为:
[0008]
一种钾离子选择性滤膜/磁性介孔纳米复合材料,包括核壳结构磁性介孔纳米粒子和沉积于核壳结构磁性介孔纳米粒子表面的钾离子选择性滤膜,核壳结构磁性介孔纳米粒子包括单分散的磁性纳米粒子内核和介孔二氧化硅外壳。
[0009]
本发明中所述的单分散的磁性纳米粒子内核(如氧化铁纳米粒子)的粒径为5~80nm。作为优选,所述单分散的磁性纳米粒子内核(如氧化铁纳米粒子)的粒径10~30nm。进一步优选为10~20nm。
[0010]
本发明中所述的核壳结构磁性介孔纳米粒子的粒径为30~300nm。作为优选,所述磁性介孔纳米粒子的粒径50~150nm。进一步优选为80~120nm。
[0011][0012]
本发明中所述的离子选择性滤膜由结构式ⅰ的分子组装而成,能够特异性捕获钾离子,随后将离子扩散至磁性介孔纳米粒子孔道内,同时磁性介孔纳米粒子可以携载钾离子指示剂,从而对活体细胞外钾离子浓度进行高选择性、高灵敏度荧光成像。
[0013]
本发明提供的钾离子选择性滤膜/磁性介孔纳米复合材料的制备方法包括:
[0014]
1)通过热分解法,以油酸为表面配体,得到尺寸形貌均一的磁性氧化铁纳米粒子;
[0015]
2)利用十六烷基三甲基溴化铵作为氧化铁纳米粒子的稳定剂和介孔二氧化硅形成的模板,在碱性环境中(如ph 10左右),以硅酸四乙酯为硅源,在氧化铁纳米粒子内核外形成介孔二氧化硅外壳,得到核壳结构磁性介孔纳米粒子。
[0016]
3)将滤膜前体小分子沉积于磁性介孔纳米粒子表面,得到钾离子选择性滤膜/磁性介孔纳米复合材料。
[0017]
作为优选,本发明提供的钾离子选择性滤膜/磁性介孔纳米复合材料的制备方法,包括:
[0018]
(1)所述磁性氧化铁纳米粒子的制备:通过热分解法,将油酸和油酸铁复合物溶于二十烷溶液中,在300~340℃下反应0.5~1h,用丙酮沉淀洗涤得到氧化铁纳米粒子。
[0019]
(2)所述磁性介孔纳米粒子的制备:利用十六烷基三甲基溴化铵作为氧化铁纳米粒子的稳定剂和介孔二氧化硅形成的模板,在65~75℃下加入硅酸四乙酯和乙酸乙酯,继续反应0.5~4h;用氯化钠甲醇溶液萃取产物,得到磁性介孔纳米粒子。
[0020]
(3)将n-苄基水杨酰胺和无水碳酸钾加入到n,n-二甲基甲酰胺中,加热至85~95℃,继续加入1,1,1-三(对甲苯磺酰氧基-甲基)乙烷和2-氨基对苯二甲酸反应,得到钾离子选择性滤膜前体。
[0021]
(4)所述钾离子选择性滤膜/磁性介孔纳米复合材料的制备:将磁性介孔纳米粒子分散于乙腈溶液中;在剧烈搅拌的条件下,向上述溶液中加入含有滤膜前体的乙腈溶液进行反应,通过原位沉积法将滤膜前体修饰于磁性介孔纳米粒子表面;在室温条件下退火10~15h,得到钾离子选择性滤膜/磁性介孔纳米复合材料。
[0022]
本发明中还提供了一种钾离子选择性荧光/磁共振双模态成像探针,包括如上述
的钾离子选择性滤膜/磁性介孔纳米复合材料,以及吸附在磁性介孔纳米粒子内的钾离子指示剂。氧化铁纳米粒子内核具有良好的磁共振成像性能;磁性介孔纳米粒子具有极大的孔洞体积,能够携载钾离子指示剂,表面包裹的离子选择性滤膜对钾离子具有较高的亲和性,选择性捕获钾离子并将其扩散至孔道内,与指示剂结合,可实现高选择性、高灵敏度钾离子浓度监测。
[0023]
本发明中还提供了一种如上述的钾离子选择性荧光/磁共振双模态成像探针在制备肿瘤良恶性诊断设备中的应用。双模态探针通过磁共振成像检测肿瘤位置形态,为功能性荧光成像提供解剖学信息;进一步通过荧光成像对肿瘤部位细胞外钾离子浓度进行监测,通过荧光信号变化确定肿瘤良恶性。
[0024]
同现有技术相比,本发明的有益效果体现在:
[0025]
(1)本发明中提供的钾离子选择性荧光/磁共振双模态探针具有优异的磁共振成像性能;同时能够选择性捕获钾离子,随后将离子扩散至孔道内与装载的钾离子指示剂结合,通过荧光成像实现高选择性、高灵敏度的活体细胞外钾离子浓度的动态监测。
[0026]
(2)本发明提供的钾离子选择性荧光/磁共振双模态探针能够有效地将高分辨率的结构磁共振成像与高灵敏度的功能性荧光成像结合,在肿瘤良恶性诊断方面具有很好的研究及应用前景,可实现灵敏、无创的肿瘤良恶性鉴别。
[0027]
(3)本发明中制备方法的反应体系温和,条件可控,所制备的材料均具有良好的生物相容性,适用性广,推广性强,具有良好的临床转化可能性。
附图说明
[0028]
图1为实施例1中磁性介孔纳米粒子的tem图;
[0029]
图2为实施例2中磁性介孔纳米粒子的tem图;
[0030]
图3为实施例3中钾离子选择性荧光/磁共振双模态成像探针的tem图;
[0031]
图4为应用例1中钾离子选择性荧光/磁共振双模态探针在30mm na
+
/k
+
溶液中的荧光成像结果图;
[0032]
图5为应用例2中钾离子选择性荧光/磁共振双模态探针在细胞外不同钾离子浓度下荧光成像结果图;
[0033]
图6为应用例2中钾离子选择性荧光/磁共振双模态探针在细胞外不同钾离子浓度下磁共振成像结果图;
[0034]
图7为应用例3中钾离子选择性荧光/磁共振双模态探针在裸鼠良恶性移植瘤模型中成像结果图。
具体实施方式
[0035]
下面结合具体的实施例和说明书附图对本发明作进一步说明。
[0036]
实施例1:磁性介孔硅纳米粒子的合成
[0037]
将0.1g十六烷基三甲基溴化铵溶解于5ml去离子水中,逐滴加入0.5ml分散于氯仿中的氧化铁纳米粒子(4mg/ml)。超声30min后,加热至60℃以除去氯仿。之后,向氧化铁纳米粒水溶液中加入45ml浓度为16mm的氨水,在剧烈搅拌条件下升温至70℃。随后快速加入0.5ml硅酸四乙酯和3ml乙酸乙酯,继续搅拌反应1.5h。用乙醇洗涤三次,离心收集产物。将
收集到的产物用1wt%氯化钠甲醇溶液萃取12h洗去模板剂即可得到磁性介孔硅纳米粒子。本实施例制备的磁性介孔硅纳米粒子的透射电镜图如图1所示,证明所得的纳米粒子尺寸形貌均一,直径约为75nm。
[0038]
实施例2:磁性介孔硅纳米粒子的合成
[0039]
将0.1g十六烷基三甲基溴化铵溶解于5ml去离子水中,逐滴加入0.5ml分散于氯仿中的氧化铁纳米粒子(4mg/ml)。超声30min后,加热至60℃以除去氯仿。之后,向氧化铁纳米粒水溶液中加入45ml浓度为16mm的氨水,在剧烈搅拌条件下升温至70℃。随后快速加入0.5ml硅酸四乙酯和3ml乙酸乙酯,继续搅拌反应3h。用乙醇洗涤三次,离心收集产物。将收集到的产物用1wt%氯化钠甲醇溶液萃取12h洗去模板剂即可得到磁性介孔硅纳米粒子。本实施例制备的磁性介孔硅纳米粒子的透射电镜图如图2所示,证明所得的纳米粒子尺寸形貌均一,直径约为115nm。
[0040]
实施例3:钾离子选择性荧光/磁共振双模态成像探针的合成
[0041]
(1)将1ml实施例2中合成的磁性介孔硅纳米粒子(10mg/ml)与2ml钾离子探针(0.5mg/ml)混合,避光搅拌24h后,水洗两次,离心收集产物分散于乙腈中,得到非选择性荧光/磁共振双模态成像探针
[0042]
(2)将3.4g n-苄基水杨酰胺和2.5g无水碳酸钾依次加入25ml无水二甲基甲酰胺中升温至90℃,随后加入2.9g 1,1,1-三(对甲苯磺酰氧基-甲基)乙烷和0.3ml 2-氨基对苯二甲酸,搅拌12h。冷却至室温后,将反应混合物加入200ml去离子水中。以石油醚-乙酸乙酯(2:1)作为洗脱液,将得到的固体产物用硅胶柱谱处理,得到白的滤膜前体固体产物。
[0043]
(3)在剧烈搅拌下,将2ml浓度为10mg/ml的滤膜前体乙腈溶液加入到5ml含有浓度为2mg/ml的非选择性荧光/磁共振双模态探针的乙腈溶液中,升温至50℃反应60min,在室温下退火12h,用甲醇洗涤一次并用水洗涤两次,即可得到钾离子选择性荧光/磁共振双模态成像探针。
[0044]
本实施例制备的钾离子选择性双模态探针的透射电镜图如图3所示,证明所得的纳米粒子尺寸形貌均一,滤膜层厚度约为3nm。
[0045]
应用例1:钾离子选择性成像效果评价
[0046]
将实施例3合成的钾离子选择性荧光/磁共振双模态探针,非选择性荧光/磁共振双模态探针,钾离子指示剂分别分散于30mm kcl溶液,30mm nacl溶液和去离子水中,并置于200μl的pcr管中。利用活体荧光成像仪进行扫描,结果如图4所示,与去离子水组相比,钾离子选择性探针仅在30mm kcl溶液中有显著的荧光信号增强,而非选择性探针和商用钾离子指示剂在kcl和nacl溶液中均有明显的荧光信号增强。由此说明,该探针具有优异的钾离子选择性荧光成像性能,不受na
+
干扰。
[0047]
应用例2:细胞水平钾离子选择性双模态成像
[0048]
细胞水平钾离子选择性荧光成像:将4t1乳腺癌细胞接种于共聚焦皿中(9
×
104个细胞/皿),在5%co2,37℃条件下培养24h。之后,将培养液更换为新鲜的rpmi 1640培养液(培养液中钾离子浓度分别为5,15,30mm)和含有浓度为0.5mg/ml钾离子选择性双模态探针的rpmi 1640培养液(培养液中钾离子浓度分别为5,15,30mm)。1h后,进行活细胞的共聚焦显微镜扫描。
[0049]
结果如图5所示,随着细胞外钾离子浓度提高,细胞外荧光信号增强,说明该探针
能够进行细胞外钾离子选择性荧光成像。
[0050]
细胞水平磁共振成像:将4t1乳腺癌细胞分别培养于新鲜的rpmi 1640培养液(培养液中钾离子浓度分别为5,15,30mm)和含有浓度为0.5mg/ml钾离子选择性双模态探针的rpmi 1640培养液(培养液中钾离子浓度分别为5,15,30mm)中。在5%co2,37℃条件下培养1h后,收集培养液,并将细胞消化离心。随后,将离心后的细胞重新分散于收集的培养液中,并用1%的琼脂糖溶液固定,进行t2加权磁共振成像扫描。
[0051]
结果如图6所示,随着细胞外钾离子浓度提高,t2加权磁共振成像信号基本没有变化,说明该探针能够进行细胞外t2加权磁共振成像,并且成像效果不受钾离子浓度影响。
[0052]
应用例3:钾离子选择性荧光/磁共振双模态探针用于肿瘤良恶性诊断
[0053]
动物模型建立:分别构建balb/c小鼠4t1细胞原位乳腺癌模型和人子宫肌瘤移植模型。
[0054]
尾静脉注射钾离子选择性荧光/磁共振双模态探针(100mg/kg),在给药前和给药1h后分别进行荧光成像和磁共振成像。结果如图7所示,给药后,良性肿瘤和恶性肿瘤部位磁共振信号均有所提高,而仅有恶性乳腺癌部位荧光信号显著增强,良性子宫肌瘤部位荧光信号基本没有变化,由此说明,基于恶性肿瘤微环境[k
+
]o变化,利用所构建的钾离子选择性双模态探针,有望实现肿瘤良恶性的鉴别。

技术特征:


1.一种钾离子选择性滤膜/磁性介孔纳米复合材料,其特征在于,包括核壳结构磁性介孔纳米粒子和沉积于核壳结构磁性介孔纳米粒子表面的钾离子选择性滤膜,核壳结构磁性介孔纳米粒子包括单分散的磁性纳米粒子内核和介孔二氧化硅外壳。2.根据权利要求1所述的钾离子选择性滤膜/磁性介孔纳米复合材料,其特征在于,所述磁性纳米粒子内核粒径为5~80nm;所述核壳结构磁性介孔纳米粒子粒径为30~300nm;所述钾离子选择性滤膜厚度为0.5~20nm。3.根据权利要求1-2任一所述的钾离子选择性滤膜/磁性介孔纳米复合材料,其特征在于,所述钾离子选择性滤膜/磁性介孔纳米复合材料的制备方法包括:1)通过热分解法,以油酸为表面配体,得到尺寸形貌均一的磁性氧化铁纳米粒子;2)利用十六烷基三甲基溴化铵作为氧化铁纳米粒子的稳定剂和介孔二氧化硅形成的模板,在碱性环境中,以硅酸四乙酯为硅源,在氧化铁纳米粒子内核外形成介孔二氧化硅外壳,得到核壳结构磁性介孔纳米粒子。3)将滤膜前体小分子沉积于磁性介孔纳米粒子表面,得到钾离子选择性滤膜/磁性介孔纳米复合材料。4.根据权利要求3所述的钾离子选择性滤膜/磁性介孔纳米复合材料,其特征在于,所述滤膜前体小分子的结构式如式ⅰ所示:5.一种荧光/磁共振双模态成像探针,其特征在于,包括权利要求1~4任一所述的钾离子选择性滤膜/磁性介孔纳米复合材料,以及吸附在磁性介孔纳米粒子内的钾离子指示剂。6.一种根据权利要求5所述的荧光/磁共振双模态成像探针在制备良恶性肿瘤鉴别设备中的应用。

技术总结


本发明公开了一种钾离子选择性滤膜/磁性介孔纳米复合材料,包括核壳结构磁性介孔纳米粒子和沉积于核壳结构磁性介孔纳米粒子表面的钾离子选择性滤膜,核壳结构磁性介孔纳米粒子包括单分散的磁性纳米粒子内核和介孔二氧化硅外壳。本发明还公开了一种荧光/磁共振双模态成像探针及在制备良恶性肿瘤鉴别设备中的应用。该荧光/磁共振双模态纳米探针的应用可实现灵敏、无创的肿瘤良恶性鉴别。无创的肿瘤良恶性鉴别。无创的肿瘤良恶性鉴别。


技术研发人员:

李方园 凌代舜 王绮玥

受保护的技术使用者:

浙江大学

技术研发日:

2022.01.26

技术公布日:

2022/12/19

本文发布于:2024-09-26 00:28:30,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/46123.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:滤膜   纳米   离子   选择性
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议