SBR在锂离子电池中的影响

  doi:10 3969/j issn 1004-275X 2020 09 026
SBR在锂离子电池中的影响
孙仲振
(沁新集团(天津)新能源技术研究院有限公司,天津 300143)
摘 要:石墨和炭黑颗粒因为都是表面疏水性、非极性,没有添加剂其在水中发生聚集不能分散。石墨负极在制浆过程中,CMC和SBR的对石墨颗粒的分散以及对浆料的微观结构形成非常重要,CMC和SBR太多或者太少都会影响电池性能。对SBR连接机理、SBR对石墨分散的影响、SBR相关的黏辊、锂电干燥温度对SBR的影响、SBR对锂离子电池低温性能的影响以及负极膨胀的影响进行了分析阐述,强调在石墨负极应用中SBR优化对锂离子电池的重要性。
关键词:SBR;锂离子电池;浆料配比;优化
中图分类号:TM912   文献标识码:A   文章编号:1004-275X(2020)09-080-03
EffectsofSBRinlithiumionbatteries
SunZhongzhen
  (QinxinGroup(Tianjin)NewEnergyTechnologyResearchInstituteCo ,Ltd ,Tianjin300143)
  Abstract:Graphiteandcarbonblackparticlescannotbedispersedduetotheirnon-polarityandsurfacehydrophobicproperties ToomanyortoofewCMCandSBRinbatteryproductionhaveanegativeimpactonelectrodeperformance CMCandSBRareveryimportantforthedispersionofgraphiteparticlesandthemicrostructureformationoftheslurry TheinfluenceofSBRonthedecentralizedanddispersiveeffectofSBRingraphite,theinfluenceofSBRonthelowtemperatureperformanceandnegativeexpansionoflithium-ionbattery,emphasizestheimportanceofSBRoptimizationtolithium-ionbatteryinapplication   Keywords:SBR;Lithium-ionBattery;SlurryRatio;Optimization
  SBR作为锂离子电池的辅材之一,虽然用量极少(仅用于石墨负极材料的匀浆和涂布),但是不可或缺的组成部分。极片涂布过程中因为烘干速度溶剂的挥发影响SBR的迁移,造成SBR不同的分布状态,形成的浆料和极片微观结构都有大的差异,形成的微观结构也直接影响到电池的性能。SBR使用不合理,会造成极片微观结构差异,影响石墨负极粘结性能,在辊压时容易出现黏辊;影响石墨负极与铜箔之间的粘结性能,极片在电池充放电过程中容易极化,引起负极掉料降低电池的使用寿命。因此对SBR正确的认识、分析SBR对锂电池性能的影响,合理使用SBR对锂离子电池有重要的意义。
1 SBR连接机理
  首先了解一下SBR在浆料中如何才能起到黏接剂的作用。只有石墨和炭黑颗粒均匀分散在浆料和极片中,锂离子电池才能表现出较好的性能。石墨和炭黑颗粒因为都是表面疏水性、非极性,没有添加剂其在水中发生聚集不能分散。石墨负极与炭黑分散时以阴离子分散剂为主,以非离子分散剂为辅,可以取得稳定的分散体系,一般负极石墨负极选用SBR和CMC两者协同作为黏结剂,CMC称为增稠剂,SBR称为黏结剂。
  选用SBR和CMC两者协同作为黏结剂的原因:  1)SBR黏结性虽然很强,但不能长时间高速搅拌。如果匀浆时加入SBR后再长时间的搅拌,SBR容易破乳,因其结构遭到破坏而降低了黏结性,一般SBR选择在搅拌后期加入低速搅拌,浆料配备后如果不能进行涂布,需要低速搅拌代替静置。另外SBR分散效果不好,过多的SBR会产生较大溶胀,所以不单独用SBR作为黏结剂。
  2)CMC对于负极石墨的分散能够起到很好的作用。CMC在水溶液中会分解,其分解产物将在石墨表面吸附,吸附后石墨颗粒因静电而相互排斥,达到很好分散效果。当CMC的比例很高时,多出来CMC没有吸附到石墨颗粒表面,这些CMC结合导致相互之间的引力大于吸附后石墨颗粒之间的斥力,形成的石墨颗粒团聚。CMC呈脆性,如果黏结剂只用CMC配备石墨负极浆料,在后序制片过程中,辊压时石墨负极会出现塌陷,分切时出现严重的掉粉。
  3)匀浆工艺中CMC和SBR合理比例混合可以互相弥补缺陷,因而石墨负极浆料具有良好的涂布性能[1]。CMC和SBR与石墨、炭黑之间的配比需要通过一系列的试验数据,然后选择优化的配比方
案。另外CMC和SBR混合的方式及搅拌工艺也对浆料性能产生影响,这些都需要时间过程中通过试验数据摸索稳定的工艺,其中SBR主要起黏结、CMC起增稠作用[1]。不同的CMC/SBR/
石墨/炭黑都需要优化工艺来获得最佳的浆料性能。
  从电池负极的组成来看,石墨约用96份、SBR约用1 5~2 3份,但是石墨的比表面积是最小的,SBR膜覆盖在石墨颗粒的表面,以及存在与石墨颗粒的中间,SBR之间形成连接网络起到桥梁作用。同时SBR颗粒只有150nm左右单独SBR颗粒没有连接力,在浆料中只有很多SBR结合在一起形成SBR膜,才能形成连接力对石墨负极颗粒起到黏结的作用。SBR更多的连接是点对点的连接,把石墨与石墨中间、石墨和碳黑、石墨和铜箔联结在一起。
2 SBR对石墨分散的影响
  1)当浆料里只有低含量的CMC没有SBR时,石墨颗粒在匀浆过程成中团聚而不能很好的分散。  2)加入CMC与石墨比例适中时,加入1 0%~4 5%的SBR到浆料里,由于SBR吸附在石墨表面使石墨颗粒分散而浆料的黏度和模量都会降低。  3)当CMC为0 7%~1 0%时浆料表现黏弹性,连续加入SBR也不会改变浆料的流变特性。
  SBR和CMC同时加入和先加CMC随后加入SBR两种混合方式进行对比,结果表明,石墨在浆料分散中CMC起了主导作用,CMC优先与石墨颗粒表面吸附。
  总之,当CMC添加量很低时,SBR加入会吸附在石墨颗粒表面,对石墨的分散有一定的影响;随
着CMC添加量的增加石墨表面的吸附量也增加,SBR就不能吸附在石墨表面,进而对石墨的分散起不到作用;当CMC达到一定量以后,多余的没能吸附在石墨表面的CMC结合导致引力大于斥力,这样会形成的石墨颗粒之间的团聚。因此,在石墨负极浆料的分散中CMC起到了很关键的作用。
3 与SBR相关的黏辊
  1)涂布工序时,极片烤箱温度设置太高,负极片烘烤得相对较快,因溶剂蒸发过快导致SBR迁移大部分带到极片表面,表面SBR浓度明显增高,形成表面黏性大于铜箔与负极材料之间黏性的极片微观结构,容易导致辊压机形成黏辊,导致因为黏辊脱落的颗粒掉落在极片上。可以通过我们调整涂布的烘干及抽风频率的设置,更好控制涂布机的运行抑制SBR迁移,优化涂布烘烤干燥曲线。
  2)SBR连接力不够,浆料中SBR含量偏少,导致活性物质之间黏结力不足,与箔片接结合力不足,当辊压时(与触其它物质接触时),有立刻脱离黏到其它物体上的趋势。水性负极浆料的话可以考虑下CMC和SBR的比例,太少肯定黏不好,可以调整控制SBR的存储膜量和黏弹性来改善黏辊性能。  3)在制浆时出现SBR漂蓝上浮情况,涂布后会使SBR的浓度分布不均,活性物质与箔材之间的黏接性变差,辊压时就容易黏辊。主要措施:制浆后减少静置时间,或可用低速搅拌代替静置;通过不同工艺调整石墨-CMC-SBR搅拌方式及配比,依据试验数据选择匹配的石墨-CMC-SBR工艺方案;也可选择特殊改性的SBR,使其表面官能团和CMC形成更好的相互作用,减少SBR漂蓝的现象。
4 锂电池干燥温度对SBR的影响
  锂离子电池在制作过程中严格控制水分,提高电芯干燥温度是降低水分的主要途径。在电芯烘烤干燥过程中,黏结剂会高温下受热,不同性能的黏结剂可能会引发可交联基团发生交联的现象,从而影响电极性能。因此研究电芯干燥对黏结剂性能的影响也是十分重要的。
  王栋梁等[2]分析了水性黏结剂LA132和丁苯橡胶(SBR)的热性能,温度过高时LA132会发生分子间交联,导致活性物质同集流体的黏接性受到破坏电池循环性能变差,其干燥温度不宜高120℃,而使用SBR的极片,性能几乎不受干燥温度的影响,SBR受热不发生交联,剥离强度都维持在3 5N/mm左右。
5 SBR对低温性能产生的影响
  低温条件下锂离子电池的阻抗RB、RSEI和RCT随着温度的下降都会上升,但是RCT的上升幅度最大。如果可以降低低温条件下的RCT,就有可能提升电池的低温性能。SBR的因素而减少低温条件下电池RCT的增长幅度,SBR的应用就能够有效的提升电池的低温特性。
  充电过程中,SBR的膜覆盖石墨一定的比表面积,锂离子在传输过程中有效的嵌入石墨的方式是绕过SBR膜到达石墨表面。电解液是锂电池中正负极之间锂离子传输的运动载体,电解液和SBR润湿
性能越好,越有利于锂离子在界面之间的传导。不同SBR与相同电解液润湿是不同的。选用不同SBR的低温电池放电数据显示,润湿性能好SBR的比一般SBR有4%的提升,而0℃下电池DCR比一般SBR低15%。虽然选用接触比小的SBR提升电池性能幅度没有其他途径大,但是对于SBR来说,对电池性能影响是明显的提高。
6 SBR对负极膨胀的影响
  石墨负极极片经常遇到掉料、厚度反弹大等问题。负极极片膨胀对电池的循环性能、内阻等具有重要的影响,所以我们需要了解黏结剂SBR对负极极片膨胀的影响。负极极片的反弹主要与材料的物理性质有关系,例如弹性模量、断裂强度、延伸率等等。CMC在负极浆料中主要起到增稠的作用,SBR起到了较强的黏结作用,也正是因为SBR的高弹性,在辊压过程后,负极片会有较大程度的厚度反弹。SBR的弹性模量和强度越高,负极膨胀率越
低。贺雨雨[
3]
的试验表明:负极膨胀与辊压时所受压力以及黏结剂弹性模量和强度有关。SBR含量相同,辊压时所受压力相同,SBR弹性模量和强度越
高,负极膨胀率越低;S
BR含量越少,辊压时所受压力越小,前期的物理搁置、满电态和空电态的膨胀率就越小;负极膨胀导致电池卷芯变形,影响锂离子传输通道,进而对电池循环性能产生严重影响。  SBR的弹性模量影响极片的反弹,弹性模量越大极片厚度反弹越小。在电池材料选型时要优先挑选弹性模量大、断裂强度高的黏结剂,在材料配比调整过程中尽量降低SBR,这样可以提高电池的循环寿命。
7 总结
  综上所述,锂离子电池制造过程中浆料工序通
过SBR优化的设计,在特定条件改善SBR在极片中的微观结构,在压实的过程中提升SBR的储能膜
量,通过这个来提升减缓S
BR引起的黏辊。通过提升电解液对SBR的浸润性提升电池的低温性能。SBR合成工艺采用不同的手段,对SBR采用不同的合成单体,通过SBR表面的调整使SBR具有不同的性能,包括解耦、凝胶等方面都有调整,这样不
同的S
BR会表现不同的对电解液的浸润性,对提升锂电池的低温性能有一定的帮助。  在锂离子电池中SBR的作用好似“四两拨千斤”,虽然SBR用量很少但是对整体性能起到关键
作用。S
BR用量太少容易造成极片黏结力低,在辊压过程中易掉料、黏辊等,对于电池的后期性能也是不利的。在锂电池制造过程中人们提高对SBR的
重视,探索出与C
MC、石墨负极合理的配比及工艺,才能在锂离子电池性能上充分发挥作用。参考文献:
[1]张海燕 温度敏感电极在锂离子电池中的应用研究[D].北京:
北京有金属研究总院,2016
[2]王栋梁,李洪涛,周志勇,等 干燥温度对水性黏结剂及电池性
能的影响[
J].电池,2016,46(02):98-100.[3]贺雨雨,陈炜,冯德圣,等 黏结剂对锂离子电池负极膨胀的影
响[J].电池,2017,47(03):169-172 收稿日期:2020-07-27
作者简介:孙仲振(1976-),男,天津,汉族,硕士,研究方向:高能量密度锂离子电池。
(上接第79
页)
图5 不同采样点不同月份水环境Zn含量走势图(mg/L)
3 讨论
  通过以上分析,拉鲁湿地在全年各个季节中都
有着明显的净化作用,特别是在夏秋季节,整个湿地生态系统的净化能力达到了峰值。  通过本次12
个月的测试数据显示,拉鲁湿地对Pb的截留作用在十月前后达到了能力的上限,这也和拉鲁湿地对Pb元素较低的去除率有一定关系。
  湿地对其他元素的净化能力则还处于相对健康
的状态,其中湿地生态系统依托大量芦苇植被的存
在,使得湿地对F
e元素的净化能力最强,年平均去除率达到了71 4%参考文献:
[1]李芊芊,罗柳青,陈洋芳,等 高盐污水处理人工湿地中耐盐植
物的筛选[J].应用与环境生物学报,2017(05):873-878.[2]耿兵,张燕荣,王妮珊,等 不同水生植物净化污染水源水的试
验研究[J].农业环境科学学报,2011(03):548-553.
[3]奚旦立,孙裕生 环境监测[M] 北京:高等教育出版社,2004:
23-45
[4]杨永森 城市河流截污与人工湿地净化实例[J].环境工程技术
学报,2015(04):341-346.
[5]练建军,许士国,韩成伟.芦苇和香蒲对重金属钼的吸收特性研
究[J].环境科学,2011,32(11):3335-3340.
[6]GOPALB,GOELU.Competitionandallelopathyinacquaticplant
communities[J].BotanicalReview,1993,59(3):155-210.[7]白永飞,吕学斌,吴坚扎西,等 拉鲁湿地芦苇不同部位金属元素富
集规律研究[J].环境监测管理与技术,2019,31(2):35-38.收稿日期:2020-06-10
作者简介:周会东(1992-),男,四川成都人,本科,中级,研究方向:地质实验测试。
28—

本文发布于:2024-09-24 16:33:39,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/456845.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:石墨   负极   电池   性能   浆料
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议