电解电容的参数及应用

电解电容的参数及应用
铝电解电容内部结构图以上是OST(台湾的一个电容厂)的一个加工厂提供的。以下表格是结构图当中各个部位的详细说明:
NO部件所用材料供应商
1LEAD LINE(外引线)TINNED CP WIRE KOJOKU
2TERMINAL(内引线)ALUMINUM WIRE KOHOKU
3RUBBER SEAL(胶封)IIR/EPT QIANG AN
贴片铝电解电容4AL-FOIL(+)(铝箔)FORMED ALUMINUM FOIL MASTUSHITA,JCC
5AL-FOIL(-)(铝箔)ETCHED/FORMED ALUMINUM
FOIL
GUAN YE
6CASE(电容外壳)ALUMINUM CASE XING YU
7SLEEVE(塑料外皮)PVC QI YUAN YIN LIN
8SEPARATOR(电解纸)ELECTROLYTE PAPER DA FU
我们可以注意3个地方:AL-FOIL(+)、AL-FOIL(-)、SEPARATOR,这些都是电容内部机构的关键部件,一些国内公司还无法做到。我们可以看出,这些都是从日本JCC等公司进口的,对电容品质的保证起到了很重要的作用。
电解电容的八个基本参数详解[一]
参数一:电容值
电容值C=Q/U。
要计算主板CPU供电部位对电容容量的需求,使用如下公式:
C = I/(?V/?t)
假如CPU的电流I为50A,  ?V=50mV时,?t=10μS。则容量要求为
C=10000μf。要得到理想的滤波效果的话,就要求要7颗1500μf的电容并联使用。
参数二:耐压值
耐压值是表示电容+/-极之间的最大压差,如果出现过压现象,电容就会处于击穿状态,漏电流增大,电容内部发热巨增,电容内部的电解液会因高温变成气体致使电容内部压力增大。当这个压力超过电解电容的铝外壳承受压力的时候,电容就会发生爆炸。CPU的工作电压一般在1~2V之间,电容耐压能在4V以上就一般不会出问题,前提是电容极性不得插反!
参数三:损耗正切值
损耗正切值用tgδ表示,它是交流电压下介质中的能量损耗标称。损耗跟温度及电压有关系,损耗值越小,电容发热就越小,热量对电容的工作寿命有
很大的影响。
参数四:ESR
ESR即Equivalent Series Resistance(等效串联电阻),主板CPU供电
部分都是用的LOW ESR的电容,主板的CPU输入电容的ESR的要求值可根据以
下公式计算:
而INTEL Pentium 4处理器的要求是取3.06GHz CPU I CC=65.4A。则根据公式(1)、(2)可以得到最大ΔV TRAN=148.1mV。根据公式可以得到
R CESR/NC=2.26mΩ(全文摘自www.pcpop,有修改),当电容个数达到7个时,要求的
电容ESR值为  2.26X7=17.4mΩ。常用的高品质电容ESR参数也才13 mΩ,如RUBYCON的MBZ系列的电容,ESR值在100KHZ的测试条件下标准值为13 mΩ。
雷同的还有TAICON的HI系列,SAMXON(OST及松下等公司的电容代工厂)的GD系列。
电容爆浆
ESR值越大,滤除纹波效果就越差,尤其市面上很多只有4—5颗输出电容的
主板,将会影响主板的稳定性,用高频CPU时就更明显了。甚至还有些用较差
品牌,或是没有保证的国产电容,可能还会出现象XX等厂曾出现电容爆裂现象。参数五:纹波电流
纹波电流即RIPPLE CURRENT(也称涟波电流),电容具有“通交流,阻直流”的特性,纹波电流就是用了通交流的特性,将有害的交流成分滤掉,使直
流成分更纯,有助于CPU的工作稳定。
从公式I=U/R可以看出,它是跟ESR值是成正比关系的,在同等条件下
(同材料,同环境等),ESR值越低,电容的耐纹波电流能力越强,尤其是在
主板开关电源部分(如,CPU的电源部分在MOS管的前端)显得尤为重要,耐
纹波电流能力差,ESR值大,发热量就会增大,电容的寿命将会极大的降低,
甚至很容易出现爆裂现象。
参数六:耐温值
电解电容一般耐温值有85℃及105℃两种,在环境差的条件下,选择高耐
温的电容器有利于延长电容的工作寿命。
参数七:漏电流
电容在直流的条件下也不是完全绝缘的,漏电流的要求一般为I≤0.01CU,漏电流越小越好,漏电流小,电容的发热量小。
参数八:电容寿命
电容寿命计算公式为
Lx=Lo X 2【to-(tx+Δ
t)】/10
这是正常使用下电容的寿命公式,Lo=2000小时。
上图是TAICON的LOW ESR电容HI系列参数要求
电容的寿命跟工作温度有很大的关系,通常所说的2000小时的工作寿命,是指电容在工作温度下,如105℃,80%工作电压(加上纹波电压不超过标称电压),加上标称的纹波电流(如TAICON的2200UF/6.3V HI系列,10X20的电容,纹波电流为2.55A),工作2000小时参数变化率在要求的范围内,无故障出现(如电容爆等)。所以,要求高寿命的电容,跟选择好品质的电容是相依相存的,电容每个参数的好与坏都会直接影响到电容的工作寿命。
铝电解液电容的制造过程
贴片铝电解液电容是如今的板卡上最常见的电容之一。事实上其它种类的贴片电解电容,例如铝固体聚合物电容的制造方法也和它类似,只是阴极采用的材料不是电解液,而是固体聚合物等等。
贴片铝电解液电容是显卡上最常见的电容
贴片铝电解液电容的制造过程包括九个步骤,我们就按顺序逐一为大家讲解:
第一步:铝箔的腐蚀。
假如拆开一个铝电解液电容的外壳,你会看到里面是若干层铝箔和若干层电解纸,铝箔和电解纸贴附在一起,卷绕成筒状的结构,这样每两层铝箔中间就是一层吸附了电解液的电解纸了。
因此首先我们谈谈铝箔的制造方法。为了增大铝箔和电解质的接触面积,电容中的铝箔的表面并不是光滑的,而是经过电化腐蚀法,使其表面形成凹凸不平的形状,这样能够增大7~8倍的表面积。普通铝箔一平方米的价格在10元人民币左右,而经过这道工艺之后,它的价格将升到40~50元/平米。电化腐蚀的工艺是比较复杂的,其中涉及到腐蚀液的种类、浓度、铝箔的表面状态、腐蚀的速度、电压的动态平衡等等。我们国家目前在这方面的制造工艺还不够成熟,因此用于制造电容的经过电化腐蚀的铝箔目前还主要依赖进口。
第二步:氧化膜形成工艺。
铝箔经过电化腐蚀后,就要使用化学办法,将其表面氧化成三氧化二铝——也就是铝电解电容的介质。在氧化之后,要仔细检查三氧化二铝的表面,看是否有斑点或者龟裂,将不合格的排除在外。
第三步:铝箔的切割。
这个步骤很容易理解。就是把一整块铝箔,切割成若干小块,使其适合电容制造的需要。
第四步:引线的铆接。
电容外部的引脚并不是直接连到电容内部,而是通过内引线与电容内部连接的。因此,在这一步当中我们就需要将阳极和阴极的内引线,与电容的外引线通过超声波键合法连接在一起。外引线通常采用镀铜的铁线或者氧化铜线以减少电阻,而内引线则直接采用铝线与铝箔直接相连。大家注意这些小小的步骤无一不对精密加工要求很高。
第五步:电解纸的卷绕。
电容中的电解液并非直接灌进电容,呈液态浸泡住铝箔,而是通过吸附了电解液的电解纸与铝箔层层贴合。这当中,选用的电解纸与普通纸张的配方有些不同,是呈微孔状的,纸的表面不能有杂质,否则将影响电解液的成分与性能。而这一步,就是将没有吸附电解液的电解纸,和铝箔贴在一块,然后卷进电容外壳,使铝箔和电解纸形成类似“101010”的间隔状态。
第六步:电解液的浸渍。
当电解纸卷绕完毕之后,就将电解液灌进去,使电解液浸渍到电解纸上。随着电解液配方的改进以及电解纸制造技术的提升,如今铝电解液电容的ESR 值也逐渐得以提升,变成以前的若干分之一。
第七步:装配。
这一步就是将电容外面的铝壳装配上,同时连接外引线,电容到这时已经基本成型了。
第八步:卷边。
如果是那种“包皮”电容,就需要经过这一步,将电容外面包覆的PVC膜套在电容铝壳外面。不过如今使用PVC膜的电容已经越来越少,主要原因在于这种材料并不符合环保的趋势,而和性能表现没有太大关系。
第九步:组合装配。
如果是直插封装,就不需要经过这步
这是贴片铝电解电容制造的最后一步。这一步就是将SMT贴片封装工艺所需要的黑塑料底板元件装
在电容底部。对元件的要求,首先是密封效果要好;第二是耐热性能要好;第三还要具备耐化学性,不能和电容内部的电解液一类物质产生化学反应。这块小塑料板叫做“端子板”,其制造精度要求是非常高,因为一旦大小不合适,要么影响电容的密封性(过小),或者阻挡PCB上电容附近其它元件的装配(过大)。
钽二氧化锰电容的制造过程
板卡上除了常见的贴片铝电解液电容外,偶尔还会出现比其更加高档的钽二氧化锰电容,也就是我们熟悉的钽电容。钽二氧化锰电容的外观呈立方体,体积较小,与体积相对偏大,且外观为圆筒状的铝电解液电容截然不同。不仅是外观,钽二氧化锰电容的内部结构也和铝电解液电容不一样。那么,这种电容又是如何制造出来的呢?
钽电容是“高档的象征”
可以说将二氧化锰作为阴极的钽二氧化锰电容的制造过程,比将固体聚合物作为阴极的电容还要复杂。因为PPY和PEDT这类固体聚合物,只需要直接放置入电容内部,而钽二氧化锰电容内部的二氧化锰,由于溶解性较差,熔点较高,无法预先紧密贴合,所以只能用硝酸锰热分解生成。
制造钽电容首先需要高纯度的钽粉。其纯度至少应该在99.9%以上,目前
这方面能达到的最高工艺是99.9999%。首先,将钽粉和有机溶剂掺杂在一起,按照一定的形状加压成形,同时埋入钽引线。
然后,在2000度以上的真空高温环境下,将掺杂有机溶剂的钽粉在真空中进行烧结变成类似于海绵的状态,同时和引线真正地融合在一起。(一定要保证真空环境,杜绝氧气,因为钽的熔点非常高,低于2000度无法熔化,而在2000度时,钽会和氧气发生剧烈反应,也就是爆炸所以一定不能有氧气混入)
接下来就要把烧结以后的海绵状的钽进行氧化而得到介质——五氧化二钽。这一步是将海绵状的钽,泡在磷酸溶液里面电解,氧化后表面即生成五氧化二钽。五氧化二钽的介电常数非常高,在27左右,性能高于铝电解电容的三氧化二铝介质(介电常数7左右)。
然后就是阴极材质——二氧化锰的生成。这一环节,是将液态的硝酸锰加入钽块,然后将其在水蒸汽(催化剂)环境中进行热分解,分别成二氧化锰与二氧化氮。为了使氧化膜能够真正完全黏附在二氧化锰上,这道工序要进行好几次(掺入,分解,再掺入……)。硝酸锰吸附性好,生成的二氧化锰可以完全吸附在海面状钽块内部的无数个小孔当中。假如这里直接使用固体的二氧化锰,就无法达到这种效果,这就是为什么二氧化锰只能在制造过程中得到的原

本文发布于:2024-09-21 02:36:53,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/388033.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电容   电解液   铝箔   制造
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议