XRD及其原理、制样等

【实验原理】
根据晶体对X射线衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。
每一种结晶物质都有各自独特的化学组成和晶体结构。没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。因此,当x射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I0来表征。其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。
四.【实验仪器】
本实验使用的仪器是D/max-3B X射线衍射仪(日本理学制造)。X射线衍射仪主要由X射线发生器(X射线管)、测角仪、X射线探测器、计算机控制处理系统等组成。衍射仪的结构如图所示。
1.X射线管
X射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式, 由阴极灯丝、阳极、聚焦罩等组成, 功率大部分在1~2千瓦。可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍, 一般为12~60千瓦。常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。X射线管线焦点为1×10平方毫米, 取出角为3~6度。
选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。
2.测角仪
测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。
1)衍射仪一般利用线焦点作为X射线源S。如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。
2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。
3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给0.15毫米、0.3毫米、0.6毫米宽的接收狭缝。
4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。SS和DS配对,生
产厂供给与发散狭缝的发射角相同的防散射狭缝。
5)S1、S2称为索拉狭缝,是由一组等间距相互平行的薄金属片组成,它限制入射X射线和衍射线的垂直方向发散。索拉狭缝装在叫做索拉狭缝盒的框架里。这个框架兼作其他狭缝插座用,即插入DS,RS和SS.3.X射线探测记录装置
衍射仪中常用的探测器是闪烁计数器(SC),它是利用X射线能在某些固体物质(磷光体)中产生的波长在可见光范围内的荧光,这种荧光再转换为能够测量的电流。由于输出的电流和计数器吸收的x光子能量成正比,因此可以用来测量衍射线的强度。
闪烁计数管的发光体一般是用微量铊活化的碘化钠(NaI)单晶体。这种晶体经X射线激发后发出蓝紫的光。将这种微弱的光用光电倍增管来放大.发光体的蓝紫光激发光电倍增管的光电面(光阴极)而发出光电子(一次电子).光电倍增管电极由10个左右的联极构成,由于一次电子在联极表面上激发二次电子,经联极放大后电子数目按几何级数剧增(约106倍),最后输出像正比计数管那样高(几个毫伏)的脉冲。
4.计算机控制、处理装置
D/max-3B衍射仪主要操作都由计算机控制自动完成,扫描操作完成后,衍射原始数据自动存入计算机硬盘中供数据分析处理。数据分析处理包括平滑点的选择、背底扣除、自动寻峰、d值计算,衍射峰强度计算等。
五.【实验参数选择】
1. 阳极靶的选择:
选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。
必须根据试样所含元素的种类来选择最适宜的特征X射线波长(靶).当X射线的波长稍短于试样成分元素的吸收限时,试样强烈地吸收X射线,并激发产生成分元素的荧光X射线,背底增高。其结果是峰背比(信噪比)P/B低(P为峰强度,B为背底强度),衍射图谱难以分清。
X射线衍射所能测定的d值范围,取决于所使用的特征X射线的波长。X射线衍射所需测定的d值范围大都在10埃至1埃之间。为了使这一范围内的衍射峰易于分离而被检测,需要选择合适波长的特征X射线。一般测试使用铜靶,但因X射线的波长与试样的吸收有关,可根据试样物质的种类分别选用Co、Fe,或C,靶。此外还可选用钼靶,这是由于钼靶的特征x射线波长较短,穿透能力强,如果希望在低角处得到高指数晶面衍射峰,或为了减少吸收的影响等,均可选用钼靶。
2. 管电压和管电流的选择
工作电压设定为3 ~5倍的靶材临界激发电压。选择管电流时功率不能超过X射线管额定功率,较低的管电流可以延长X射线管的寿命。
X射线管经常使用的负荷(管压和管流的乘积)选为最大允许负荷的80%左右。但是,当管压超过激发电
压5倍以上时,强度的增加率将下降.所以,在相同负荷下产生X射线时,在管压为激发电压的约5倍以内时要优先考虑管压,在更高的管压下其负荷可用管流来调节.靶元素的原子序数越大,激发电压就越高。由于连续X射线的强度与管压的平方呈正比,特征X射线与连续X射线的强度之比,随着管压的增加接近一个常数,当管压超过激发电压的4~5倍时反而变小,所以,管压过高,信噪比P/B将降低,这是不可取得的。
3. 发散狭缝的选择(DS):
发散狭缝(DS)决定了x射线水平方向的发散角,限制试样被X射线照射的面积。如果使用较宽的发射狭缝,X射线强度增加,但在低角处入射X射线超出试样范围,照射到边上的试样架,出现试样架物质的衍射峰或漫散峰,对定量相分析带来不利的影响。因此有必要按测定目的选择合适的发散狭缝宽度。
生产厂家提供1/6°、1/2°、1°、2°、4°的发散狭缝,通常定性物相分析选用1°发散狭缝,当低角度衍射特别重要时,可以选用1/2°(或1/6°)发散狭缝。
4. 防散射狭缝的选择(SS):
防散射狭缝用来防止空气等物资引起的散射X射线进入探测器,选用SS与DS角度相同。
5. 接收狭缝的选择(RS):
生产厂家提供0.15mm、0.3mm、0.6mm的接收狭缝,接收狭缝的大小影响衍射线的分辨率。接收狭缝越小,分辨率越高,衍射强度越低。通常物相定性分析时使用0.3mm的接收狭缝,精确测定可使用.015mm的接收狭缝。
6. 滤波片的选择:
Z滤< Z靶-(1~2):
Z靶< 40, Z滤= Z靶-1
Z靶> 40, Z滤= Z靶-2x射线探测器
RS DS SS 滤波片
7. 扫描范围的确定
不同的测定目的,其扫描范围也不同.当选用Cu靶进行无机化合物的相分析时,扫描范围一般为90°~2°(2θ);对于高分子,有机化合物的相分析,其扫描范围一般为60 ~2°;在定量分析、点阵参数
测定时,一般只对欲测衍射峰扫描几度。
8. 扫描速度的确定
常规物相定性分析常采用每分钟2°或4°的扫描速度,在进行点阵参数测定,微量分析或物相定量分析时,常采用每分钟1/2°或1/4°的扫描速度。
六.【样品制备方法】
X射线衍射分析的样品主要有粉末样品、块状样品、薄膜样品、纤维样品等。样品不同,分析目的不同(定性分析或定量分析),则样品准备方法不同。
1.粉末样品:
X射线衍射仪的粉末试样必需满足这样两个条件:晶粒要细小,试样无择优取向(取向排列混乱)。所以,通常将试样研细后使用。可用玛瑙研钵研细。定性分析时粒度应小于44微米(350目),定量分析时应将试样研细至10微米左右。较方便地确定10微米粒度的方法是,用拇指和中指捏住少量粉末,并碾动,两手指间没有颗粒感觉的粒度大致为10微米。
常用的粉末样品架为玻璃试样架,在玻璃板上蚀刻出试样填充区为20×18平方毫米。玻璃样品架主要
用于粉末试样较少时(约少于500立方毫米)使用。充填时,将试样粉末-点一点地放进试样填充区,重复这种操作,使粉末试样在试样架里均匀分布并用玻璃板压平实,要求试样面与玻璃表面齐平。如果试样的量少到不能充分填满试样填充区,可在玻璃试样架凹槽里先滴一薄层用醋酸戊酯稀释的火棉胶溶液,然后将粉末试样撒在上面,待干燥后测试。
2.块状样品:
先将块状样品表面研磨抛光,大小不超过20×18平方毫米, 然后用橡皮泥将样品粘在铝样品支架上,要求样品表面与铝样品支架表面平齐。

本文发布于:2024-09-24 17:16:12,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/385481.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:X射线   衍射   试样   样品   激发   选择
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议