药物合成工艺路线的设计和选择

第二章    药物合成工艺路线的设计和选择
药物生产工艺路线是药物生产的基础和依据。一个化学合成药物往往具有多种不同的合成途径,通常将具有工业生产价值的合成途径称为该药物的工艺路线。人们习惯上将化学合成药物的合成按起始原料的不同分为全合成和半合成两类:以结构简单的化工产品为起始原料,经一系列化学反应和物理处理过程制备的方法称为全合成(total synthesis);由具有一定基本结构的天然产物经化学结构改造和物理处理过程制备的方法称为半合成(semi synthesis)。一个药物具体采用何种方法合成主要取决于经济的合理性。
药物生产工艺路线的技术先进性和经济合理性是衡量生产技术水平高低的尺度。在创新药物研究中,人们通过筛选发现先导化合物,进而合成一系列目标化合物,优选出最佳的有效化合物作为新药(new chemical, NCE)。在此过程中经济问题居于次要地位,需要主要考虑的是如何最为快捷地合成所需化合物以进行进一步研究;但是一旦研究中新药(investigational drug, IND)在临床实验中显示出优异性质,便要加紧进行生产工艺研究,寻求合成药物的最佳途径,并根据社会的潜在需求量确定生产规模──这时必须把药物工艺路线的工业化、最优化和降低生产成本放在首位,同时考虑清洁化生产等诸多问题。
进行药物生产工艺路线的设计和选择必须首先对该药物或结构类似的化合物进行国内外文献资料的调查研究和论证,然后优化一条或多条技术先进、操作条件切实可行、设备条件容易解决和原辅料有可靠来源的技术路线,最后写出文献综述报告和生产研究方案,作为大规模工业化生产的基础。
第一节  药物生产工艺路线设计的基本方法──逆合成分析
合成是指从某些原料出发,经过若干步反应,最后制备出所需的产物,最后产物就是合成目标物(药物),或叫目标分子(target molecule,TM)。实际上,进行合成路线设计时是反其道而行之。
考虑对一个特定药物进行合成,第一步是对这个药物分子的结构特征和理化性质进行收集和考察,由此可以简化合成中的问题或避免不必要的弯路。例如非甾体雌激素药物已烯雌酚(diethylstilbestrol, 2-1)的分子带有明显的对称性,因此可以考虑只合成一部分结构单元,采用分子对接的方法合成目标药物分子,从而减化合成步骤(详见分子对称法);而在考虑前列腺素E2的合成时,由于已知分子中β-羰基酮体系是不稳定的,因此可以安排在合成的最后几步形成这一结构单元,使其避免经历较多的化学反应。
进行药物分子合成的第二步是以以上分析为基础,从药物本身出发,一步步倒推出合成此药物的各种合成路线和起始原料,也就是我们通常所说的逆合成法(retrosynthesis)。
逆合成法是药物生产工艺路线设计的最基本的方法,也叫做反合成法(antithetic synthesis),其他一些更为复杂的设计方法都是建立在此方法基础上的,所以首先要掌握逆合成法。逆合成法的整个设计思路也被称为逆(反)合成分析,即从目标分子的结构出发,逐步考虑,层层分解,先考虑由哪些中间体合成目标物,再考虑由哪些原料合成中间体……最后的原料就是起始物 (starting matcrial,SM)。
逆合成分析过程要求:①每步都有合理又合适的反应机理和合成方法;②整个合成要做到最大可能的简单化;有被认可的(即市场能供应的)原料。
逆合成分析是药物合成的基础,分析思路与真正的合成正好相反:合成是使用各种各样的反应来形成分子骨架,改变分子骨架上的官能团,从而最终获得目标分子;在逆合成中则是利用一系列“转化(transformation)”来推导出一系列中间体和适宜的起始原料。转化用双箭头“  ”表示,以区别单箭头“”表示的反应。由相应的已知或可靠的反应进行转化所得的结构单元称为“合成元”(synthon),由合成元继续推导(用虚线“”表示)得到相应的试剂或中间体,有时合成元本身即是中间体。
一、转化的类型
一般来说,有机药物分子由碳骨架和官能团两部分组成。目标分子碳骨架的转化包括分拆(disconnection)、联接(connection)和重排(rearrangement)三种类型。
碳骨架分拆得到的合成元可以有以下几种类型:接受电子的a合成元;给电子的d合成元;自由基r合成元;双电子中性的e合成元。我们举一些实例来具体说明分拆的情况:
2-1碳骨架分拆举例
转化类型
目标分子
合成元
试剂、条件和中间体
异裂类型
均裂分拆
电环化分拆
联接和重排两类转化通常在双箭头上加注,合成元即为试剂、中间体,无需进一步推导:
2-2碳骨架联接和重排举例
转化类型
目标分子
合成元(试剂、中间体)
反应条件
联接
     
重排
       
官能团的转化也存在与合成反应中相同的三种情况:变换(interconversion, FGI)、引入(addition, FGA)和消除(removal, FGR)。
2-3官能团的转化举例
转化类型
目标分子
合成元(试剂、中间体)
反应条件
官能团变换
FGI
官能团引入(FGA)
官能团消除(FGR
重复和交替使用上述转化过程,就可以推导出合成目标药物分子所需的起始原料。具体做法就是一步一步地进行逆合成分析,最终推导出合成此目标化合物的可能路线和易得的起始原料。每一步逆合成可以得出若干合成元,由合成元再推导得到试剂或反应底物,如果此试剂或反应底物仍然难得,则再进行进一步的逆合成。例如局麻药物普鲁卡因(procaine, 2-3)的转化分别经历了两次官能团的转化和一次分子骨架的转化,最终得到起始原料对硝基甲苯(2-7):
图2-1:普鲁卡因的逆合成分析
在合成普鲁卡因(2-3)的过程中,以氧化对硝基甲苯(2-7),生成对硝基苯甲酸(2-5),再与二乙胺基乙醇(2-6)进行酯化反应,经二甲苯共沸脱水得硝基卡因(2-4),2-4于稀盐酸中用铁粉还原即得产物。
图2-2:普鲁卡因的合成
    推导合成元的目的是为合成设计服务,由于推导出的有些合成元所依据的转化、分拆还不存在相应的反应,因此一般没必要推导出所有可能的合成元。为从逆合成分析过程中得
到实用的合成元和易得的中间体或原料,有机合成化学家已从合成工作实践中总结了许多规律,可以作为我们药物合成设计的有益借鉴。
设计药物分子的合成路线是比较困难的问题,即使结构不太复杂的药物分子,在它们的合成过程中也总包含有骨架与官能团的变化,这样就产生了一个问题:在解决骨架与官能团都有变化的合成问题时应该首先考虑什么?
    化合物的性质主要是由分子的官能团决定的,但是在解决骨架与官能团都有变化的合成问题时,要优先考虑骨架的形成,这是因为官能团是附着于骨架上的,骨架建立不起来,官能团就没有根基。
    考虑骨架的形成时,首先研究目标分子的骨架是由哪些较小单元的骨架,通过哪些成键反应结合而成的,较小单元的骨架又是由哪些更小的碎片的骨架通过何种成键反应结合成而的……依此顺序推断下去,直到得出最小碎片的骨架,也就是应该使用的原料的骨架。
    但是考虑骨架形成的过程中又不能脱离官能团。碳骨架的形成和官能团的运用是两个不同的方面,二者相对独立但又相互联系:碳骨架只有通过官能团的运用才能装配──反应是
在官能团上发生的,或是在由于官能团的影响所产生的活动部位(例如羰基或双键)上发生的,因此,在建立碳碳键之前应首先建立碳杂键。
二、逆合成转化的一般顺序
逆合成分析过程如同数学运算:数学运算是从已知条件开始,最终获得正确答案,虽然解题的过程只要逻辑正确可以因人而异,却有繁简之分;而任何一条合成路线的设计,只要能合成出所需要的化合物,应该说都是合理的,但是合成的技巧、路线设计水平的高低却体现在路线的简洁、产率的高低、原料的来源方便与否、操作的难易等诸多方面。为了设计一条高水平的合成路线,应该科学、合理地做好逆合成转化工作。一般来说,逆合成转化工作应遵循以下顺序:
有机合成化学与路线设计
1. 由目标分子结构和反应性决定逆合成顺序。在进行药物分子合成过程中,首先需要对目标分子有充分认识,并对有机反应有深入了解,通过对目标分子的结构考察,分析其结构特征及化学反应性质,从而设计出有针对性的合成路线。在目标分子的分拆过程中,应首先分拆对称部分(见分子对称法);然后分拆分子中不稳定部分或影响分子反应性及选择性的部分。
目标分子中C-N、C-S、C-O等碳杂键通常是该分子的拆键部位,即分子的连接部位。例如抗真菌药益康唑(econazole, 2-8)分子中有C-O和C-N两个拆键部位,可从这两处追溯其合成的前一步中间体:
如图2-3所示,从虚线a处断开,益康唑的前体为对氯甲基氯苯(2-11)和1-(2,4-二氯苯基)-2-(1-咪唑基)乙醇(2-9);从虚线b处断开,前体为咪唑(2-12)和2-(4-氯苯甲氧基)-2-(2,4-氯二苯)氯乙烷(2-10)。进一步分拆,断开C-N键或C-O键,2-9的前体为1-(2,4-二氯苯基)-2-氯代乙醇(2-13)和咪唑(2-12);2-10的前体为对氯甲基氯苯(2-11)和2-13。综上所述,无论按照a途径或b途径分拆,得到的合成益康唑的基本原料都为咪唑(2-12)、对氯甲基氯苯(2-11)和1-(2,4-二氯苯基)-2-氯代乙醇(2-13),问题是先合成C-O键还是先合成C-N键有利呢?
按照b途径分拆,2-13与对氯甲基氯苯(2-11)在碱性条件下制备中间体2-10时,不可避免地将发生2-13自身分子的烷基化反应,从而使反应复杂化,降低的2-10收率。因此,先形成C-N键,再形成C-O键的a途径对合成益康唑分子更为有利。
图2-3:益康唑的逆合成分析
1-(2,4-二氯苯基)-2-氯代乙醇(2-13)是一个仲醇,可由相应的酮还原制得,而其前体α-氯代-2,4-二氯苯乙酮(2-14)可由2,4-二氯苯(2-15)与氯乙酰氯(2-16)经Friedel-Crafts反应制备。

本文发布于:2024-09-21 19:36:19,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/369494.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:合成   分子   药物   骨架   路线   官能团   反应
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议