斯特林制冷机无油润滑间隙密封的设计与研究

无油涡旋机斯特林制冷机无油润滑间隙密封的设计与研究
李垒;张姗
【摘 要】传统的制冷机回热器常使用接触式滑动密封,存在磨损,限制了制冷机的使用寿命.间隙密封的应用则可以避免这些问题.斯特林制冷机的密封关键在于气缸与活塞的间隙密封,能否有效地将其密封直接影响了斯特林制冷机的性能与可靠性.斯特林制冷机回热器采用间隙密封,这种密封方式不仅可以达到密封的目的,同时可以消除因密封面接触而产生的磨损,以及因此而产生的磨损污染.但是,由于间隙内气体的泄漏,引起了冷量的损失,使制冷量减少.因此在间隙密封的设计中要合理设计间隙的大小以及间隙的偏心度,以确保密封的有效性及其使用寿命.
【期刊名称】《枣庄学院学报》
【年(卷),期】2013(030)002
【总页数】4页(P102-105)
【关键词】斯特林制冷机;间隙密封;冷量损失
【作 者】李垒;张姗
【作者单位】枣庄学院机电工程学院,山东枣庄277160;枣庄学院机电工程学院,山东枣庄277160
【正文语种】中 文
【中图分类】TB663
0 引言
目前,制冷机械的泄漏主要通过设置密封装置的方式来防止泄漏. 根据运动特性与工作状态的不同,常用的密封装置可分为动密封和静密封两大类,而动密封又根据接触方式的不同分为非接触式密封和接触式密封两种[1]. 两者虽然各有优缺点,但通常认为非接触式密封的性能更好,更适用于制冷机械.这主要是因为对于非接触式密封而言,其密封表面不相互接触,故接触面不存在机械摩擦,较之于接触式密封就节省了这部分功耗.同时,因无机械摩擦,故而在活塞与气缸之间也不会产生因磨损而产生的污染. 斯特林制冷机常采用的密封方式就是非接触密封中的间隙密封.
间隙密封不仅可以使斯特林制冷机达到密封的目的,同时,可以消除因为密封而浪费的功耗,以及由此而产生的污染. 斯特林制冷机间隙密封的原理就是在密封间隙中注入被密封的工质(常为制冷剂),通过降低间隙中工质的压力达到密封的目的. 虽然间隙密封会存在一定的间隙而产生泄漏,但通常泄漏量较小,不会影响系统的正常工作. 泄漏量的大小主要由密封间隙和系统内外压力差所决定,密封间隙通常由制造工艺等确定,而系统内外压力差由系统内压力确定,系统外压力常为大气压. 泄漏的工作介质在通过密封间隙时,会产生节流作用.为了精确节流,减小工作介质的泄漏,会存在一个最小泄漏量,采用间隙密封的方式必然会存在一定量的泄漏(铁磁流体密封除外). 所以,在不影响制冷系统正常运行的情况下,可以求得该系统的最小泄漏量[2].
间隙密封设备中常采用活塞环来实现密封. 斯特林制冷机也存在有活塞与气缸,因此常采用活塞环进行密封.而活塞环属于易损件,因此限制了斯特林制冷机的工作使用时间.活塞与气缸本身的磨损,加上密封活塞环所带来的磨损,以及由于磨损而产生的污染,进一步减小了斯特林制冷机的使用寿命,增加了泄漏,为延长斯特林制冷机的使用寿命带来了困难.因此,为延长斯特林制冷机的使用寿命,必须研究其密封方式,取消密封环的使用而采用其他密封方式.目前,为延长斯特林制冷机的使用寿命,其密封普遍采用间隙密封的方式[3
].间隙密封在活塞部位的密封主要是通过活塞与气缸之间的微小径向间隙,并使其轴向具有一定长度,通过这部分空间内介质压力的变化来实现密封的一种密封形式.在孔轴处,间隙密封在装配时的要求是需通过定心装配,使孔轴部件间存在一定间隙值,达到无接触密封.因而,在这类斯特林制冷机运转时,在气缸与活塞、孔与轴之间的密封采用间隙密封,达到无摩擦无磨损密封的目的. 综上可知,高效、长寿命、高可靠性的斯特林制冷机的密封可采用间隙密封的密封方式.
所谓“自润滑”,对斯特林制冷机来说就是采用无油润滑间隙密封,在不添加润滑剂的情况下就可自动润滑的密封方式.“自润滑”常因无需润滑油,特别适用于压缩介质不能接触油液,或者其他特殊场合,比如各种不能存在氧气或油液的场合. 对于斯特林制冷机,如果密封材料选择不当,或者密封装置安装不合理,就会导致制冷系统频繁发生故障,制冷效率降低,甚至使制冷设备和相关配件的使用寿命大大缩短.
1 间隙密封材料的选择
最初的摩擦密封材料常选用金属材料,从1934 年开始,以石墨制造的密封元件登上历史舞台,在应用于第一台无油润滑往复式空气压缩机之后,人们逐渐认识到非金属材料作密封
元件的优良特性.制冷压缩机活塞与压缩缸部位的无油润滑是通过采用具有自润滑性能的非金属材料制造密封元件来实现,同样,斯特林制冷机也是采用这种自润滑材料来实现无油润滑.制冷上常采用的材料主要为填充聚酰亚胺(PI)和填充聚四氟乙烯(PTFE)等.填充聚四氟乙烯作为密封元件的材料,其做法是在聚四氟乙烯基体中,加入特定比例的填充物(青铜粉、玻璃纤维、二硫化钼、石墨等)制作而成,以这种材料制造的密封元件具有优良的耐磨性能,是制造自润滑密封元件的首选材料之一. 但是,填充聚四氟乙烯材料在高温高压下会产生蠕变,从而引起密封元件的使用寿命缩短、耐磨性变差的问题.而以填充聚酰亚胺制造的自润滑密封元件可以克服这些问题,这在现在实验所用的密封材料中已有很好的体现. 目前,出现了一种新型材料:复合型填充聚四氟乙烯,它是由60%的高分子材料作为主体,同时对其填充一定量的的对羟基苯甲酸聚酯、玻璃纤维等材料,最后采用热压技术成型.以这种复合材料制造的密封元件,其表面硬度和导热系数均远高于普通填充聚四氟乙烯材料,同时具有优良的耐磨和自润滑性能,价格也远低于填充聚酰亚胺和填充聚四氟乙烯[4-7].
2 间隙密封泄漏量的理论分析
90 年代以来,关于斯特林制冷机研究的热点,主要为如何提高其制冷效率和工作性能方面.而现阶段的斯特林制冷机,其工作性能的提高关键在于可靠性的提高,主要取决与提高其回热器的使用寿命[8].常用的活塞式斯特林制冷机,其需要密封的部位主要有三处,分别为压缩机压缩缸与压缩活塞之间的密封1,动力活塞与压缩气缸之间的密封2,还有就是压缩缸与动力活塞之间的间隙密封3,具体结构如图1 所示.间隙密封由于间隙的存在,必然会造成一部分工作介质的泄漏,对于制冷系统来说,就会造成一部分制冷量的减少,以及制冷剂的损失.根据图1,结合斯特林制冷机的运行可知,这三处密封情况各不相同:间隙密封1 处因其两端制冷剂温度的不同而存在较大的温差,间隙密封2 处则会具有交替发生变化的压力差,间隙密封3 处则是上下两个密封表面都处在运作状态[9].
图1 密封间隙模型图Fig.1 Seal gap model diagram
关于斯特林制冷机的间隙密封,其数学描述为:
间隙中气体的基本控制方程为:
上式中ρ、μ、p 分别为气体密度、动力粘度系数和压强分别表示气体所受力和速度矢量,t 则为时间.
间隙中气体的状态方程为:
上式中T 为气体温度,R 为常用质量气体常数.
由于实际情况和计算的不同,以下计算基于如下假设[10]:
(1)间隙中介质的厚度远小于它的宽度和长度(如非必要,部分计算中可忽略);(2)沿间隙中介质厚度方向上的压力变化可忽略,即为方便计算,假设空隙中没有旋转运动,间隙中介质的流动可看作一维流动;(4)忽略介质重力的影响;(5)假设介质的流动是准稳态的;(6)介质的流动较复杂,简单假设为层流流动;
其控制边界条件为:
y = h/2,u = up;y = - h/2,u = ud.式中h 为间隙密封的间隙高度,up、ud 分别为密封间隙流动上边界速度和下边界速度.
如其间隙为环形,则其宽度为πDm,其中为名义直径,D1、D2 分别为此间隙的内直径和外直径.则关于此间隙的质量泄漏率G 可由下式计算:

本文发布于:2024-09-25 14:35:33,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/367329.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:密封   间隙   制冷机   采用   泄漏   介质   元件   方式
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议