汽轮机疏水系统工艺

汽轮机疏水系统工艺
汽轮机疏水系统是指在汽轮机本体设备( 内缸、外缸、隔板套、主汽门及调门等) 及相关管道( 主再蒸汽、导汽、排汽、抽汽及轴封汽等管道) 的低点部位设置疏水管,在汽轮机启动、稳定运行、负荷变动、甩负荷、停机等过程中,通过合理控制疏水阀,排放内部积水,防止汽轮机设备及相关管道进水或者冷蒸汽回流,保证汽轮机设备安全。同时,为了提高汽轮机设备运行的经济性,疏水系统还必须能够减少疏水介质及热量损失。当前,汽轮机设备的进汽参数越来越高,单机容量不断增大,汽轮机的结构和运行控制变得越来越精细和复杂,这对汽轮机疏水系统的设计提出了更高的要求。近些年来汽轮机设备汽缸上下温差高、抽汽管道存在积水、汽轮机跳闸后转速失控、疏水口周围金属出现裂纹或发生泄漏等现象时有发生,有必要对汽轮机疏水系统存在的问题进行梳理和分析,研究相应对策,防止汽轮机设备损坏。1、汽轮机疏水系统设计要求汽轮机疏水系统的设计原则是: 要求汽轮机在启动、稳定运行、变负荷、故障、停机、热态备用等各种工况下,能够及时排放汽轮机设备及相关管道内部的积水,并防止其进水或者冷蒸汽回流。通常在汽轮机冷态启动( 暖机、暖管) 时或者管道隔离状态下,其内部蒸汽会冷凝而出现积水; 当管道中蒸汽减温器工作不正常时,会给管道带来积水。主再蒸汽管道若有积水,会带入汽轮机; 抽汽管道若存在积水,当汽轮机跳闸时
发光模组积水会汽化并回流到汽轮机; 当疏水管道出现压力倒挂时,会造成积水回流或者冷蒸汽回流。疏水系统设计应做到: (1)在所有可能积水的部位设计有足够通流能力的疏水管阀;(2)在合适部位设计有用于监测、报警和控制积水、进水、冷蒸汽回流的仪器仪表( 如液位开关、温度传感器等) ;(3)设计合理的联锁保护逻辑,通过控制疏水阀开关,防止汽轮机在各种工况下积水、进水或者冷蒸汽回流; 
(4)在保证汽轮机设备运行安全基础上提高经济性。
人造细胞2、汽轮机疏水系统存在问题及原因分析
2.1 冷蒸汽回流导致汽缸上下温差大 
刮刮卡制作某电厂1号、2号机组系300MW 引进型亚临界机组,机组空转或停机后中压缸上下温差一般在50℃~60℃,最大达到86℃ ; 另一电厂1号机组为 300MW机组,首次启动停机后高压内缸上下温差达110℃,高压外缸上下以及中压缸上下温差均达到150℃,严重超出运行规范要求,影响机组再次启动。分析原因为: 高压缸、中压缸的疏水与其它高压管道的疏水连接到同一疏水集管,在停机后或机组空转时汽缸处于真空状态,而疏水集管内因其它高压管道疏水形成压力,造成冷蒸汽通过汽缸疏水管回流到汽缸,引起汽缸上下温差大。人造板热压机
2.2 疏水回流导致中压调门后扩散器裂纹 
采用西门子技术的超超临界汽轮机,中压调门后的扩散器在底部疏水孔位置普遍出现纵向裂纹,造成再热蒸汽泄漏到中压内外缸夹层,影响机组经济性和安全性。检查某电厂1000MW汽轮机中压调门后扩散器的疏水管设计,左右两根疏水管各自从中压调门后扩散器的底部疏水孔引出,向下布置后合并到一起,再通过一个靠近疏水集管的疏水阀连接到疏水集管,同时,高压缸系统的6路疏水管也连接到该疏水集管。按照疏水控制逻辑,在机组负荷低于20% 或者跳闸时,汽轮机疏水阀自动打开,其它工况运行时,这些疏水阀关闭,也可以手动打开。由于中压调门后的疏水管较长,在疏水阀关闭时,疏水管内部蒸汽因冷却而积有凝结水,此时若机组跳闸,因高压缸内部压力较高,6 路疏水同时排放会使疏水集管内的压力迅速升高,而中压缸与低压缸( 凝汽器) 相通,压力快速下降到真空,当中压调门后的疏水阀打开时,因疏水集管内的压力高于中压缸内压力,造成疏水管内的凝结水倒流,直接回流到中压调门后扩散器底部的疏水孔,引起底部材料温度激变,造成极高的温度应力。如果机组经常发生高负荷跳闸,极易造成扩散器底部材料应力疲劳而产生裂纹。杯芳烃
2.3 抽汽管道积水造成转子叶片损伤或转速失控 
曝气头
某电厂3号机组系600MW 亚临界、一次再热、三缸四排汽凝汽式汽轮机,在基建调试期间发生过一次350MW负荷下汽轮机跳闸,再次启动后发现低压B转子5/6号轴振由跳闸前的30/30μm 左右增高到100/70μm,当时怀疑转子上可能有部件掉落,由于机组振动不是很高,并且其它运行参数正常,就没有开缸检查,仅通过动平衡加以控制。在机组运行1年后开缸检查,发现低压 A、B 转子的汽侧第3级动叶上有多组围带受到磨损,其中B转子有4组围带脱落,该级动叶正好位于第6 级抽汽口前。分析原因为: 第6级抽汽管道存在积水,在机组跳闸后饱和水汽化回流到汽缸,冲击转子动叶造成部分围带脱落。检查第6级抽汽管道布置,从低压缸下部经凝汽器引出后水平布置,因前方空间受阻,管道向上弯曲,跨过干扰后再弯回水平布置,形成一个拱形,在拱形上游的水平管段底部原来设计有疏水管,但现场检查发现没有安装。当时6号低加因正常疏水管故障没有投入运行,抽汽阀处于关闭状态,造成该处管段底部存有积水,由于该处管段顶部和底部没有设计温度测点,因而也无法发现内部有积水情况。
某化工厂自备电厂1号机组系50MW 双抽凝汽式汽轮机,型号CC50- 8.83 /5.1 /0.67,在一次调试中发现调门油动机漏油,就地打闸停机,当时负荷23.1MW,约30s 后汽轮机转速飞升至3690r/min。根据设计,当机组负荷大于25%( 12.5MW) 时自动关闭抽汽逆止阀前的疏
水阀,当时工业抽汽和回热抽汽均未投入运行,抽汽逆止阀处于关闭状态,造成逆止阀前的蒸汽管道存有积水,机组跳闸后这些饱和水汽化,蒸汽倒流回汽轮机引起转速失控。
2.4 疏水管合并引起阀体裂纹 
某9E 联合循环燃气轮机,其汽轮机型号为LZN55-5.6 /0.65,因主汽调门严密性问题解体检查,左右两侧调门均发现阀座前的疏水口周围金属出现大量龟状裂纹,裂纹很深且已扩展到阀座密封面。该汽轮机的主汽阀设计有气动旁路阀,气动旁路阀后面的旁路管上设计有疏水管,该疏水管与调门阀座前的疏水管合并,左右两侧疏水管再次合并,这样共有 4 根疏水管合并在一起,通过一个疏水阀连接到疏水扩容器。主汽调门内部设置有蒸汽滤网,而阀座前的疏水口正好位于该滤网的下游侧。机组正常运行时,气动旁路阀及疏水阀均关闭,因疏水管本身的散热作用,疏水管内部蒸汽会慢慢冷却下来形成少量凝结水,在调门滤网压差作用下,凝结水会在调门阀座前的疏水口溢出,溢出的凝结水又马上被高温蒸干,使得疏水口周围金属长期受温度交变作用,从而出现疲劳裂纹。
2.5 疏水转注引起管道泄漏 
某电厂1号机组系1000MW 超超临界汽轮机,第4级抽汽管道在机组投运 1 年后发生泄漏,漏汽点位于去给水泵汽轮机支管前的垂直管段上,在泄漏部位上游( 下方) 的垂直管段上接入一根疏水管,该疏水来自4抽供向辅助蒸汽的管道,这样的疏水转注设计是为了简化系统减少疏水阀。在汽轮机低负荷运行时,因4抽压力低,难以向辅助蒸汽母管供汽,该供汽管道实际处于隔离状态; 当机组在高负荷时,如果本机4抽不向辅助蒸汽母管供汽,该段管道也处于隔离状态。由于管道散热作用,内部蒸汽会冷凝而产生少量疏水,当疏水被转注到4抽垂直管段上后,因4抽管道内蒸汽流速较高,这点疏水被高速汽流冲刷到下游( 上方) ,贴在管壁上迅速蒸干,造成下游管壁温度交变,引起应力疲劳。停机后割管检查发现,该疏水转注孔下游管道内壁上存在大量疲劳裂纹。

本文发布于:2024-09-21 13:41:25,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/331722.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:汽轮机   疏水   管道   蒸汽   机组   积水
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议