学科竞赛-电子设计大赛四旋翼设计报告最终版模板

电子设计大赛四旋翼设计报告最终版模板
电子设计大赛四旋翼设计报告最终版
农药渗透剂四旋翼飞行器(A 题)参赛队号:0057号
四旋翼飞行器
设计摘要:垃圾热解气化炉
四氯化锆四旋翼作为一种具有结构特殊的旋转翼无人飞行器,与固定翼无人机相比,它具有体积小,垂直起降,具有很强的机动性,负载能力强,能快速、灵活的在各个方向进行机动,结构简单,易于控制,且能执行各种特殊、危险任务等特点。
因此在军用和民用领域具有广泛的应用前景如低空侦察、灾害现场监视与救援等。多旋翼无人机飞行原理上比较简单,但涉及的科技领域比较广,从机体的优化设计、传感器算法、软件及控制系统的设计都需要高科技的支持。
四旋翼无人机的飞行控制技术是无人机研究的重点之一。它使用直接力矩,实现六自由度(位置与姿态)控制,具有多变量、非线性、强耦合和干扰敏感的特性。另外,由于飞行过程中,微型飞行器同时
系统平台开发评估受到多种物理效应的作用,还很容易受到气流等外部环境的干扰,模型准确性和传感器精度也将对控制器性能产生影响,这些都使得飞行控制系统的设计变得非常困难。
2硅酸铝纤维毡因此,研究既能精确控制飞行姿态,又具有较强抗干扰和环境自适应能力的姿态控制器是微小型四旋翼飞行器飞行控制系统研究的当务之急。
一、引言:
1.1 题目理解:四旋翼飞行器,顾名思义,其四只旋转的翅膀为飞行的动力来源。四只旋转翼是无刷电机,因此对于无刷电机的控制调速系统对飞行器的飞行性能起着决定性的作用。在本次大赛中,需要利用四旋翼飞行器平台,实现四旋翼的起飞,悬停,姿态控制,以及四旋翼和地面之间的测距等功能。
1.2 设计思路:为了满足飞行器的设计要求,要使用以微控制器为核心的控制系统,使本系统以MC9S12XS128模拟出控制信号,用STM32 MMC10接收模拟信号,然后翻译出模拟信号,利用加速度与陀螺仪传感器采集飞行器的飞行数据,加以闭环调控和精准的控制算法。进行上升、下降以及悬停等动作。
的比较熟悉,芯片功能强大,但以往做的核心板较大,所需的电路较多,考虑到四轴飞行器的轻便,故而不太是一个很理想的选择。
2.1.2 方案二:主控板使用STM32。STM32板子的I/O口很多,自带定时器和多
路PWM,能够实现的功能较多,符合实验要求。Stm32迷你板在体积和重量上
也不是很大,对飞机的载重量要求不是很高。
综上所述,我们一致决定使用STM32 MMC10作为此次大学生电子竞赛的主控板。
2.2 飞行姿态的方案论证:
2.2.1 方案一:十字飞行方式。四轴的四个电机以十字的方式排列,x轴和y轴成直角,调整俯仰角和翻滚角的时候分开调整,角度融合简单,适合初学者,能明确头尾,飞行时机体动作精准,飞控起来也容易。
2.2.2 方案二:X行飞行方式。四轴的四个电机以X字的方式排列,灵活性和可调性较高,调整的时候应该相邻两个融合调节,融合复杂。X型飞行方式非常自由灵活,旋转方式多样,能够花样飞行,也能够做出很多高难度动作,可是控制上相对比较困难。
综合以上两种方案鉴于我们是初次尝试,因此选择了方案一。
2.3 角度测量模块方案论证
2.3.1 方案一:光纤陀螺仪。光纤陀螺仪是以光导纤维线圈为基础的敏感元件,由激光二极管发射出的光线朝两个方向沿光导纤维传播。光传播路径的变化,决定了敏感元件的角位移。光纤陀螺仪寿命长,动态范围大,瞬时启动,结构简单,尺寸小,重量轻,可是成本较高,鉴于我们这是初次尝试,需要多次实验,破坏较大。
2.3.2 方案二:MPU6050三轴陀螺仪。MPU6050三轴陀螺仪就是能够在同一时间内测量三个不同方向的加速度、角速度、角度。单轴的话,就只能够测定一个方向的量,那么一个三轴陀螺就能够代替三个单轴陀螺。它现在已经成为激光陀螺的发展趋向,具有可靠性很好、结构简单不复杂、重量很轻和体积很小等等特点,可是其输出数据需要大量的浮点预算才能保证较高的精度,这样会影响主控板对最终的姿态控制的响应速率。电子标签读写器
综合以上两种方案,我们选择了方案二
2.4 飞行器距地距离显示的方案论证:
2.4.1 方案一:选用LCD液晶显示:LCD液晶显示在显示效果上较丰富,能够显示字母,数字等等需求,但在我们实际编写的时候发现驱动代码稍显复杂,显示效果在实际光线较亮的时候外界不容易清晰的看到LCD显示的内容,特别是当四轴飞行器在实际飞行的过程中,显示效果并不理想。
2.4.2 方案二:选用LED数码管显示:实际的观察中,发现数码管的显示比较单一,但显示内容清晰可辨认,实际使用中对系统的占用资源也比较少。
考虑比赛要求只要求看到实际的显示效果,因而我们决定使用数码管来显示四轴飞行器距离地面的距离。
2.5 确定方案之后,针对题目要求,最终编写出合适算法,进行控制。程序流程
图如下(图2.1):
图2.1
2.6 程序部分核心代码见附录二
三、设计实现:
3.1 超声波测距模块:
由于竞赛要求需要四轴飞行器悬停在一个距离,因而在我们做的过程中,选用超声波传感器用于测量四轴飞行器距离地面的距离,测量误差实际保证在1cm一下,基本做到精确测
量,在写超声波模块的
驱动时,开始我们只想经过在程序中写一个无限循环的延时程序来测量超声波往返的时间,这种方法在开始单步调试测距的时候表现正常,能够读到正确数据,但在单片机中加入中断优先级的程序时这种方法就不能胜任了。
最后经我们小组讨论决定利用单片机的pit中断实现超声波模块的测量往返时延,测量精确。实验效果较好。
3.2 显示报告飞行高度:
在我们的方案设计中小队决定使用数码管来显示四轴飞行器距离地面的高度,在我们做的过程中首先要解决的问题就是选用静态显示还是动态显示的问题,开始因为想的比较简单就想单纯的用I/O口置高与置低电平来控制LED数码管的亮暗,发现如果4位数码管显示的话所用到的I/O口就需要4*8=32个IO口,这对单片机有限的引脚来说是一个巨大的负担,在查资料与请教老师后我们到一种动态显示数码管的方法很好的解决了这个问题,所需引脚仅仅用11个,实际测试中,显示效果很好。
四、测试:
4.1 硬件测试:将四旋翼模型拆解,然后用物理法测量中心,使其重心维持在四轴飞行器的中心。然
后按顺序将电池,主控板,陀螺仪等机械硬件使其牢固的装在模型飞机上。硬件测试使
用了万能角度尺、示波器、万用表、压线钳、
电量测量仪等。
4.2 软件测试:为了保证PWM波输出的正确性,每次改动程序初始化之后用示波器测试波形的输出,保证其占空比和周期的正确性。在正式算法程序之前,又用串口显示每个电机PWM输入,观察电机在各个PWM占空比的电机转速。确保软件反应硬件是规律一致的。
软件测试最关键的是PID的参数调试,其中,p参数是调整整个四旋翼飞行器的反应速度和力度的,调节p参数以当整个模块反应迅速而且四旋翼振动频率四边偏差不大的时候即可完成,d 参数在这之中的目的是一个抑制作用,当振荡幅度过大的时候能从任意角度一次直接返回平衡位置。I参数是一个积分项,当哪一边反应过小时能够加一个i参数,这样就成了一个完整的PID参数调试了。
4.3 硬件软件联合测试:此步主要经过在STM32平台下进行编程,进行一系列的算法设计与调校,确认四旋翼飞行器是否能够飞行,经过大量的测试与实践,出能刚刚使飞行器的电机占空比(PWM)值,当然,这一步能够经过联合超声波距离传感器设计一个动态PID调节,具体的调节方法依据能反应姿态的传感器联合作用。

本文发布于:2024-09-23 18:32:38,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/322931.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:飞行器   旋翼   显示
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议