变压器油的谱分析与故障判断

变压器油的谱分析与故障判断培训课件
一、变压器油的谱分析
变压器绝缘材料主要是绝缘油和绝缘纸,变压器在故障下产生气体主要是来源于油和纸的热裂分解,气相谱分析就是根据故障时产生的气体在绝缘油中含量的多少,判断其故障类型。用气相谱法对充油电气设备油中气体含量的分析,能判明设备存在的故障,更重要的是分析判断故障的性质,是过热性故障还是放电性故障及故障的大概部位是在裸金属部分还是介入了固体绝缘,从而进一步估计故障的危害性,以便及时采取措施,作出正确处理,防患于未然。
(一)气相谱法的原理
谱法又叫层析法,它是一种物理分离技术。它的分离原理是使混合物中各组分在两相间进行分配,其中一相是不动的,叫做固定相,另一相则是推动混合物流过此固定相的流体,叫做流动相。当流动相中所含的混合物经过固定相时,就会与固定相发生相互作用。由于各组分在性质与结构上的不同,相互作用的大小强弱也有差异。因此在同一推动力作用下,不同
组分在固定相中的滞留时间有长有短,从而按先后秩序从固定相中流出,这种借在两相分配原理而使混合物中各组分获得分离的技术,称为谱分离技术或谱法。当用液体作为流动相时,称为液相谱,当用气体作为流动相时,称为气相谱。
气相谱法的一般流程主要包括三部分:载气系统、谱柱和检测器。当载气携带着不同物质的混合样品通过谱柱时,气相中的物质一部分就要溶解或吸附到固定相内,随着固定相中物质分子的增加,从固定相挥发到气相中的试样物质分子也逐渐增加,也就是说,试样中各物质分子在两相中进行分配,最后达到平衡。这种物质在两相之间发生的溶解和挥发的过程,称分配过程。分配达到平衡时,物质在两相中的浓度比称分配系数,也叫平衡常数,以K表示,K=物质在固定相中的浓度/物质在流动相中的浓度,在恒定的温度下,分配系数K是个常数。GATAL歌词翻译
由此可见,气相谱的分离原理是利用不同物质在两相间具有不同的分配系数,当两相作相对运动时,试样的各组分就在两相中经反复多次地分配,使得原来分配系数只有微小差别的各组分产生很大的分离效果,从而将各组分分离开来。然后再进入检测器对各组分进行鉴定。
(二)谱分析的九种气体:
分析的气体
分析目的
推荐的气体
O2
了解拖起程度和密封的情况,严重过热时O2也会极度消耗而明显的减少。
N2
在进行氮气测定时,可了解氮气饱和程度,与氧气的比值可以更准确的分析氧气的消耗程度。在正常情况下,氧气、氮气、二氧化碳之和还可以算出油的总含气量。
必测的气体
H2
与甲烷之比可判别并了解过热温度,或了解是否有过热放电和受潮情况。
传达信息CH4
甲烷
了解过热故障的热点温度情况。
C2H105数字商城6
乙烷
C2H4
乙烯
C2H2乙炔
了解有无放电现象或存在价高的热点温度。
CO
了解固体绝缘的老化情况,或者内部平局温度是否过高。
CO2
与一氧化碳结合,可了解固体绝缘是否有无热分解。
二、变压器的故障产生的气体及故障类型
(1)变压器绝缘材料产生的气体组分
油和固体绝缘材料在电或热的作用下分解产生的各种气体中,对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。正常运行的老化过程产生的气体主要是一氧化碳和二氧化碳。在油纸绝缘存在局部放电时,油裂解产生的气体主要是氢和甲烷。在故障温度高于正常运行温度不多时,产生的气体主要是甲烷。随着故障温度的升高,乙烯和乙烷逐渐成为主要特征。在温度高于1000℃ 时,例如在电弧弧道温度(3000℃以上)的作用下,油裂解产生和气体中含有较多的乙炔。如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。
绝缘油和绝缘材料在不同温度和能量作用下主要产生的气体组分,归纳如下:cng加气机
1)在140℃以下时有蒸发汽化和较缓慢的氧化。
2)绝缘油在140℃ 到500℃ 时油分解主要产生烷类气体,其中主要是甲烷和乙烷,随温度的升高(500℃以上)油分解急剧地增加,其中烯烃和氢增加较快,乙烯尤为显著,
而温度(约800℃左右)更高时,还会产生乙炔气体。
3)油中存在电弧时(温度超过1000℃),使油裂解的气体大部分是乙炔和氢气,并有一定的甲烷和乙烯等。
4)设备在运行中,由于负荷变化所引起的热胀和冷缩,用泵循环油所引起的湍流,以及铁芯的磁滞伸缩效应所引起的机械振动等,都会导致形成空穴和油释放溶解气体。如果产生的气泡集在设备绝缘结构的高电压应力区域内,在较高电场下会引起气隙放电(一般称为局部放电),而放电本身又能进一步引起油的分解和附近的固体绝缘材料的分解,而产生气体,这些气体在电应力作用下会更有利于放电产生气体。这种放电使油分解产生的气体主要是氢和少量甲烷气体。
5)固体绝缘材料,在较低温度(140℃以下)长期加热时,将逐渐地老化变质产生气体,其中主要是一氧化碳和二氧化碳,且后者是主要成分。
6)固体绝缘材料在高于200℃作用下,除产生碳的氧化物之外,还分解有氢、烃类气体,温度不同,一氧化碳和二氧化碳的比值有所不同,这一比值在低温时小而高温时大。
决策天地7)铁钢等金属材料起催化作用,水与铁反应产生氢气。此外,奥氏不锈钢材能储藏氢,与绝缘油接触释放出来溶解于油中。
有时设备内并不存在故障,而由于其他原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。例如:有载调压变压器中切换开关油室的油向变压器本体渗漏或某种范围开关动作时悬浮电位放电的影响:设备曾经有过故障,而故障排除后绝缘油未经彻底脱气,部分残余气体仍留在油中;设备油箱曾带油补焊;原注入的油就含有某几种气体等。还应注意油冷却系统附属设备(如潜油泵,油流继电器等)的故障产生的气体也会进入到变压器本体的油中。运行中设备内部油中气体含量超过下表所列数值时,应引起注意。
仅仅根据分析结果的绝对值是很难对故障的严重性作出正确判断的,必须考察故障的发展趋势,也就是故障点(如果存在的话)的产气速率。产气速率是与故障消耗能量大小、故障部位、故障点的温度等情况直接有关的。如总烃的相对产气速率大于10%时应引起注意。
(2)对一氧化碳和二氧化碳的判断
当故障涉及到固体绝缘时会引起一氧化碳和二氧化碳含量的明显增长。但根据现有统计资料,固体绝缘的正常老化过程与故障情况下劣化分解,表现在油中一氧化碳的含量上,一般情况下没有严格的界限,二氧化碳含量的规律更不明显。因此,在考察这两种气体含量时更应结合具体变压器的结构特点(如油保护方式)、运行温度、负荷情况、运行历史等情况加以综合分析。
对开放式变压器一氧化碳含量一般在300ppm以下。如总烃含量超出正常范围,而一氧化碳含量超过300ppm,应考虑有涉及到固体绝缘过热的可能性;如一氧化碳含量虽然超过300ppm,但总烃含量在正常范围,一般可认为是正常的;对某些有双饼式线圈带附加外包绝缘的变压器,当一氧化碳含量超过300ppm时,即使总烃含量正常,也可能有固体绝缘过热故障。

本文发布于:2024-09-22 00:58:13,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/266441.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:气体   故障   产生   温度   放电
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议