陶瓷材料晶须增韧11

陶瓷材料的晶须增韧
摘要:晶须增韧机理 以及晶须增韧的应用
关键词:
1前言:
    晶须强韧化是用高强度、高模量的陶瓷纤维与陶瓷基体构成陶瓷基复合材料,靠裂纹偏转弯曲、纤维脱粘、纤维拔出和纤维桥连等机制来达到模高陶瓷的韧性和强度的一种方法,这样的复合材料称做纤维增强陶瓷基复合材料。晶须对陶瓷的增强、增韧效果不仅取决于纤维和陶瓷本身的性能(强度、弹性模量、线胀系数等),而且还取决于两者间是否有良好的匹配性(物理和化学相容性)及界而的结合状态。因而有的陶瓷材料加入纤维后可能强度和韧性同时提高,而有的陶瓷材料则仅仅韧性提高而强度下降。因为对陶瓷来说.韧性往往显得要比强废更为重要,因此有时即便是复合后仅韧性提高而强度下降,摊的复合也是值得的。
2增韧机理
1.裂纹弯曲和偏转增韧
在裂纹扩展尖端应力场中,增强体会导致裂纹弯曲和倔转,从而使基体的应力场强度因子降低,起到阻碍裂纹扩展的作用。随增强体长径比的增加,裂纹弯曲增韧的效果增加。裂纹一般很难穿过晶须,更容易绕过晶须并尽量贴近表面而扩展,即裂纹发生偏转。裂纹偏转增韧示意图见图7—25
裂纹偏转后受的拉应力往往低于偏转前的,而且裂纹的扩展路径增长,裂纹扩展中需消耗更多的能量,因而起到增韧的作用。裂纹偏转可以绕着晶须倾斜偏转或扭转偏转,一般认为,裂纹偏转增韧主要是扭转偏转机制起作用。
2.晶须脱粘增韧
在复合材料中,晶须或短纤维脱粘会产生新表面,因此需要能量,见图7—26。尽管单位面积的表面能很小,但所有脱粘纤维总的表面能则很大。假设纤维的脱粘能等于应力释放引起的纤维上的应变释放能,则每根纤维的脱粘能为:
其中:d为纤维直径人为纤维临界长度14卡因是什么制成的为纤维拉伸断裂强度;Zf为纤维弹性模量。将纤维体积代人,则可求出单位面积的最大脱粘能QD
由上述分析可知,若想通过纤维脱粘达到最大增韧效果,应使纤维体积含量增高,Lc要大,即纤维与基体的界面要弱。因为Lc与界面应力成反比。
3.晶须桥连增韧
对于特定位向和分布的晶须,裂纹很难偏转.只能沿着原来的扩展方向继续扩展,如图7—28所示。这时紧靠裂纹尖端处的晶须并未断裂,而是在裂纹两侧搭桥,使裂纹表面产生一个压应力.以抵消外加拉应力的作用,从而使裂纹难以进一步扩展,起到增韧作用,即纤维桥连增韧。
4.晶须拔出增韧
晶须拔出,是指靠近裂纹尖端的晶须或短纤维在外力作用下沿着它和基体的界面滑出的现象。纤维拔出示意图见图7—27。很显然纤维首先发生脱粘才能拔出。纤维拨出会使裂纹尖端应力松弛,从而减缓了裂纹的扩展。纤维的拔出需要外力作功,因此起到增韧作用。
提高界面的结合强度会提高纤维的拔出效应对韧性的贡献。如果纤维与基体间的结合太弱,稍受力纤维就从基体中拔出.基体无法把外界载荷传递给纤维,纤维不能成为承受载荷的主体,因面强韧化效果差,甚至可能围结合稀松,纤维的存在类似于孔洞,反而会降低强度和韧性;反之如果纤维与基体的界面结合强度过高,则不能发生纤维与基体的界面解离(裂纹偏转的一部分)和纤维的拔出,材料将以灾难性的脆性方式断裂面不是以韧性方式断裂,虽然可以提高强皮但不能提高韧性。因此,影响增韧效果最为关键的问题之一是界面强度,此界面强度应适中,不能高于纤维的断裂强度。
3影晌Sic晶须增韧的因素
3.1界面性质
3.1.1界面的物理相容性
界面的物理相容性是指纤维与基体问弹性模量和线胀系数的关系。在cMc材料中,纤维和基体一般是不同的物质,因而线胀系数和弹性模量通常是不同的,即使是同种物质(SiC纤维和SiC陶瓷基体),因晶体结构不同或各向异性,其线胀系数和弹性模量也会有所不同,而线胀系数和弹性模量的差异会对纤维强韧化的效果产生非常重要的影响。
    由于材料在烧结后的冷却过程中,因线胀系数不同,在界面上会产生残余应力和残余应变,甚至可能因陶瓷基体本身的脆性(大多数陶瓷材料的断裂应变值小于o05)面出现微裂纹,这种现象称为热失配。残余应力正比于∆a∆T,其中∆aaf-am,afam分别为纤维和基体的线胀系数;∆a是烧结象度与当前温度的差值。若∆ao,即纤维线胀系数大于基体线胀系数时,纤维沿轴向受拉应力,基体受压应力,纤维产生一定的预拉应力,成为载荷
的主要承载者,有利于强度和韧性的提高;反之若∆a0,纤维沿轴向受压应力,基体受拉应力,当材料受外力作用时,纤维不能先于基体象提载荷,不利于强韧化。因此对同一种纤维,基体的线胀系数小,强韧化效果好。
    在应变相同的情况下,若纤维的弹性模量比基体大,纤维将分提大部分载荷,从面有利于强韧化;反之若纤维弹性模量小于基体的,则纤维的作用不能充分发挥出来。
因此一般要求EfEm、和afamEf钱箱Emafam分别为纤维和基体的弹性模量和线胀系数。
3.1.2界面的化学相容性
界面化学相容性是指在烧结和使用温度下,纤维与基体间不发生化学反应及纤维性能在该温度下不致退化,否则纤维的增强韧补作用将要降低,面且还会因由此结材料带来的缺陷导致材料的性能下降。因此有必要研究纤维与基体之间界面的结合方式及其对材料性能的影响。
纤维与基体的界面结合有两种,一种是物理结合,一种是化学结合。当界面为物理结合时,界面两相仅为机械咬合.界面结合强度较低,这时只须考虑弹性模量和绥胀系数的匹配性即可,而无须考虑化学相容性。而当界面为化学结合时,界面有新相生成.且购相间为化学键相接,界向结合强度较高,不易发生界面解离和纤维拔出,有利于增强、增韧。但若界面结合过强(超过纤维强度),不能发生界固解离和纤维拔出,只能导致纤维断裂;过多的纤维断裂,必将导致材料以脆性方式断裂,虽然可提高强度,但却不能提高韧性。
疫苗伴侣实际上,在正常的烧结温度下.纤维一般不会与陶瓷基体发生全面的化学反应而损害纤维的整体性能,但往往会与基体发生定的界面反应,形成过强的界面强度:比如碳纤维就会与多种陶瓷特别是氧化物陶瓷形成过强的界面。因此,为获得良好的增韧效果,通常要对纤维进行适当的表面涂层处理,以起隔离作用,防止形成过强的界面。
3.2 晶须的性能
3.2.1 晶须尺寸要从晶须的长径比来考虑。随着晶须长径比的增加,晶须完整性越好,结构中所包含的缺陷也会减少,晶须性能越高。但是晶须长径比越小导致单位体积用量的增多和界面面积增大,在基质中不易分布均匀,造成复合困难。总之复合材料对SIC晶须的共同要求是:完整的pSIC晶须单晶含量高,直晶率高,弯晶和复晶的含量低,晶须的直径、长短和长径比的分布均匀性好,晶须中的缺陷少,杂质的含量低。
3.2.2 晶须含量晶须含量的不同将影响到增韧机理和复合材料的断裂模式。如果晶须含量过高,易形成团聚,在基体中分散不均匀,复合材料的断裂韧性值不会太高;反之如果晶须含量过低,不但起不到增韧的作用,反而成为多余夹杂甚至成为缺陷源。因此晶须只在在一定的含量下,才能有效实现增韧作用,根据简化模型可以计算晶须的最佳配比。
3.2.3晶须强度增韧效应分析显示晶须的强度是很重要的。根据前人研究表明,随着晶须强度的增加,桥接增韧效应也增加。同样拔出效应也随晶须强度增加而增加。而含缺陷的晶须导致增韧效果降低。
3.2.4 磨内喷水晶须排布晶须在基体中的排布方向对增韧效果影响很大。实践证明:当晶须增韧陶瓷刀具材料,晶须排布平行于前刀面时,晶须径向受拉,造成界面脱离基体,起不到增韧的效果;当晶须排布垂直于前刀面时,晶须轴向受拉,通过裂纹偏转和拔出效应吸收裂纹扩展能量,起到增韧的效果。
4 SiC增强陶瓷基材料的研究与应用
碳化硅晶须增强陶瓷材料的研究中,开始主要以Al2O3,ZrO2,莫来石等为基体材料,随着复合技术的不断成熟,基体材料又出现了Si3N4等非氧化物材料。碳化硅晶须的加入使复合材料的断裂韧性、抗弯强度等性能有明显的改善。   
SiC晶须增韧氧化铝陶瓷
氧化铝陶瓷具有熔点高、硬度高、耐磨、结构稳定等优点,但其强度较低。用SiC晶须增强氧化铝的研究首先是由Becber1984年报道的。实验证明[8],SiC晶须的体积分数为20%,SiCw/Al2O3复合材料的弯曲强度达508MPa,断裂韧性KIC8.78MPa·m1/2,夺刀器比纯铝的KIC提高了近一倍。碳化硅晶须补强后从而进一步拓宽了氧化铝的用途,目前已被应用于磨
损部件、切削刀具和内燃机的某些构件。其中SiC晶须增韧的陶瓷切削刀具材料,以其良好的断裂韧性和抗热冲击性能在切削高温合金等难加工材料方面表现了优异的性能,延长了刀具的使用寿命,切削效率远高于普通刀具,应用潜力巨大。但目前用于刀具的SiC晶须增强氧化铝陶瓷还存在以下两个问题题:一是SiC晶须在切削加工时能与金属钛和铝发生化学反应,而不适合金属钛和铝工件的加工;二是切削温度超过1000,SiC晶须也会与钢发生化学反应,产生硅化铁,使刀具很快磨损[9]
3.2 SiC晶须增韧氧化锆陶瓷
四方氧化锆陶瓷增韧之源是氧化锆中的相变,因而增韧效果受温度的制约。但在中高温条件下为热力学稳定期,其相变增韧作用消失。而且,由于其断裂应力与相变临界应力相互制约,强度和断裂韧性值往往不能同时达到最大,晶须补强效应被认为是弥补该材料上述缺陷的最有效的方法之一[10]。王双喜等[11]研究发现,2mol%Y2O3-超细料中加入30vol%SiC晶须,可以细化2Y-ZrO2材料的晶粒,并且使材料的断裂方式由沿晶断裂为主变为穿晶断裂为主的混合断裂,从而显著提高了复合材料的刚度和韧性。氧化锆增韧陶瓷可用来制造发动机构件,如连杆、轴承、汽缸内衬等,此外,由于其隔热性能优异、线膨胀系数高(与金属相当),故在隔热发动机上可作为金属的匹配件材料。
3.3 SiC晶须增韧莫来石陶瓷
莫来石是Al2O3-SiO2二元体系中唯一在常温和高温条件下都稳定的晶相,是一种重要的结构和功能陶瓷候选材料,目前已成为先进陶瓷来石材料的弯曲强度和断裂韧性都比较低,从而影响了其实际应用。中科院上海硅酸盐研究所的黄政人等[12]采用30vol%βSiC晶须增强莫来石,SPS烧结条件下材料强度比热压高10%左右为570MPa,断裂韧性为4.5Mpa·m1/2比纯莫来石提高100%以上。吕林等[9]的研究将莫来石陶瓷材料的增韧补强与发动机低应力化设计结合起来,所研制的6150长效连续捕鼠器无水冷发动机经过700h台架耐久考核实验,耐久性试验的时间达到了国际领先水平。
3.4 SiC晶须增韧氮化硅陶瓷
SiC晶须增韧Si3N4陶瓷是提高其断裂韧性和稳定性的主要途径之一。已有的研究表明[13]晶须增韧效果不仅取决于晶须的分散程度、晶须尺寸和体积分数,而且与晶须的空间位置及方向性密切相关。Wang Chang an[14]等对SiC晶须的氮化硅基复合材料中晶须取向的研究表明,当晶须方向基本一致且晶须与基体界面弱连接时,此方向中的断裂韧性具有极大值,抗折强度和断裂韧性分别为1038MPa10.7MPa·m1/2;王东方等[15]在氮化硅增韧的实验中
发现,SiCw/Si3N4的硬度达22GPa,断裂韧性为10MPa·m1/2,分别比纯氮化硅提高了10%和近两倍。氮化硅陶瓷的一系列优异的物理机械性能及化学性能,在高温结构材料、工具陶瓷材料、耐磨陶瓷材料和耐磨腐蚀陶瓷材料等方面,具有极大的市场和应用潜力。随着晶须增韧研究的不断深入,氮化硅陶瓷在刀具、轴承、发动机、绝缘材料等方面的应用将会更加完善。

本文发布于:2024-09-24 13:17:34,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/239198.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:晶须   纤维   基体
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议