SiC粉体的表面改性

SiC粉体的表面改性
一、背景
1.简介:
碳化硅分子式为SiC,是用石英砂、石油焦(或煤焦)、木屑(生产绿碳化硅时需要加食盐)等原料通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,可作为磨料和其他某些工业材料使用。
碳化硅晶体结构分为六方晶系的α-SiC和立方晶系的β-SIC,β-SiC于2100℃以上时转变为α-SiC。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体。
碳化硅在大自然也存在罕见的矿物,莫桑石。
2.问题:
经机械粉碎后的 SiC 粉体形状不规则,且由于粒径小,表面能高,很容易发生团聚,形成二次粒子,无法表现出表面积效应和体积效应,难以实现超细尺度范围内不同相颗粒之间的均匀分散以及烧结过程中与基体的相容性,进而影响陶瓷材料性能的提高。加入表面改性剂,改善 SiC 粉体的分散性、流动性,消除团聚,是提高超细粉体成型性能以及制品最终性能的有效方法之一。
二、过程透风窗
1.改性方法分类:
碳化硅粉体的制备技术就其原始原料状态主要可以分为三大类:固相法、液相法和气相法。
(1)固相法 
固相法主要有碳热还原法和硅碳直接反应法。碳热还原法又包括阿奇逊(Acheson)法、竖式炉法和高温转炉法。
看门狗电路SiC粉体制备最初是采用Acheson法,用焦炭在高温下(2400 ℃左右)还原SiO2制备的。
20世纪70年代发展起来的ESK法对古典Acheson法进行了改进,80年代出现了竖式炉、高温转炉等合成β-SiC粉的新设备。
L N. Satapathy等以Si+2C为起始反应物,采用2.45GHz的微波在1200-1300℃时保温5分钟即可实现完全反应,再通过650℃除碳即可获得纯的β-SiC,其平均粒径约0.4μm。
硅碳直接反应法又包括自蔓延高温合成法(SHS)和机械合金化法。
SHS还原合成法利用SiO2与Mg之间的放热反应来弥补热量的不足,该方法得到的SiC粉末纯度高,粒度小,但需要酸洗等后续工序除去产物中的Mg。杨晓云等[4]将Si 粉与C 粉按照 n(Si):n(C) = 1:1制成混合粉末,并封装在充满氩气的磨罐中,在WL-1 行星式球磨机上进行机械球磨,球磨25 h 后得到平均晶粒尺寸约为6 nm 的SiC 粉体。
(2)液相法 
牧一征
    液相法主要有溶胶-凝胶(Sol-gel)法和聚合物热分解法。
溶胶凝胶法为利用含Si和含C的有机高分子物质,通过适当溶胶凝胶化工艺制取含有混合均匀的Si和C的凝胶,然后进行热解以及高温碳热还原而获得碳化硅的方法。Limin Shi等以粒径9.415μm的SiO2为起始原料,利用溶胶凝胶法在其表面包覆一层酚醛树脂,通过热解然后1500 ℃于Ar气氛下进行还原反应,获得了粒径在200 nm左右的SiC颗粒。有机聚合物的高温分解是制备碳化硅的有效技术。
一类是加热凝胶聚硅氧烷,发生分解反应放出小单体,最终形成SiO2和C,再由碳还原反应制得SiC粉;另一类是加热聚硅烷或聚碳硅烷放出小单体后生成骨架,最终形成SiC粉末。 
(3)气相法 
琥珀酸二辛酯磺酸钠
气相合成碳化硅陶瓷超细粉末目前主要是运用气相反应沉积法(CVD)、等离子体法(Plasma Induced CVD)、激光诱导气相法(Laser Induced CVD)等技术高温分解有机物,所得粉末纯度高,颗粒尺寸小,颗粒团聚少,组分易于控制,是目前比较先进的方法,但成本高、产量低,不易实现大批量生产,较适合于制取实验室材质和用于特殊要求的产品。
路况电台
我们主要讲的是用硅烷偶联剂对SiC进行改性,也就是液相法。硅胶模具制作方法
2.实验过程:
(1)原料:
选用自行加工的 SiC 粉体, D50 = 0.897 µm,SiC 含量为 98.98% (质量分数,下同);硅烷偶联剂(KH–550,NH2CH2CH2CH2Si(OC2H5)3);丙三醇(分析纯); 甲苯(分析纯);丙酮(分析纯);氮气(99.99%)。
(2)工艺过程:
硅烷偶联剂的烷氧基是与 SiC 粉体表面的—Si—OH 反应的主要基团,它极易水解生成醇类[8],故表面改性反应必须选择在非水和非醇类介质中进行。在四口烧瓶中加入 350 mL 甲苯、50 g SiC 微粉和相应比例的硅烷偶联剂,通入 N2,在 N2 气流下升温至 85 ℃并搅拌反应 6 h。反应结束后,产物趁热真空抽滤, 经多次超声分散(超声介质为水、 丙酮;时间为 30 min)、离心洗涤(介质:水、丙酮;时间:25 min)后,于 105 ℃烘箱中干燥 12 h,冷却后待用。

本文发布于:2024-09-21 22:05:29,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/223707.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:反应   高温   进行   凝胶   表面
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议