巨磁电阻效应

――GMR模拟传感器的磁电转换特性测量
【实验目的】
1. 掌握GMR效应的定义;
2. 了解GMR效应的原理;
3. 熟悉GMR模拟传感器的构成;
4. 测量GMR磁阻特性曲线。
【实验仪器】
ZKY-JCZ巨磁电阻效应及应用实验仪、基本特性组件、导线
【实验原理
一、巨磁电阻效应定义及发展过程
1、定义
200710月,科学界的最高盛典瑞典皇家科学院颁发的诺贝尔奖揭晓了。本年度,法国科学家阿尔贝·费尔(Albert Fert)和德国科学家彼得·格林贝格尔(Peter Grunberg)因分别独立发现巨磁阻效应而共同获得2007年诺贝尔物理学奖。瑞典皇家科学院在评价这项成就时表示,今年的诺贝尔物理学奖主要奖励用于读取硬盘数据的技术,得益于这项技术,硬盘在近年来迅速变得越来越小
巨磁阻到底是什么?
诺贝尔评委会主席佩尔·卡尔松用比较通俗的语言解答了这个问题。他用两张图片的对比说明了巨磁阻的重大意义:一台1954年体积占满整间屋子的电脑,和一个如今非常普通、手掌般大小的硬盘。正因为有了这两位科学家的发现,单位面积介质存储的信息量才得以大幅度提升。目前,根据该效应开发的小型大容量硬盘已得到了广泛的应用。
巨磁电阻效应(GMRGiant Magneto Resistance)是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象。也就是说,非常弱小的磁性变化就能导致
巨大电阻变化的特殊效应,变化的幅度比通常磁性金属与合金材料的磁电阻数值高10余倍。
2、发展过程
1Fe/Crn多层膜的GMR效应特性曲线
人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。量子力学出现后,德国科学家海森伯(W. Heisenberg)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。后来发现很多的过渡金属和稀土金属的化合物具有反铁磁(或亚铁磁)有序状态,化合物中的氧离子(或其他非金属离子)作为中
介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。直接交换作用的特征长度为0.1-0.3nm,间接交换作用可以长达1nm以上。1nm已经是实验室中人工微结构材料可以实现的尺度,所以1970年之后,科学家就探索人工微结构中的磁性交换作用。
1988节能灯生产设备年法国的M.N.Baibich等人在美国物理学会主办的Physical Review Letters 上发表了有关Fe/Cr巨磁电阻效应的著名论文,首次报告了采用分子外延生长工艺(MBE)制成Fe(100)/Cr(100)规则型点阵多层膜结构。在这种(Fe/Crn结构中,Fe为强铁磁性金属,Cr为反铁磁性金属,nFeCr的总层数。它是采用MBE工艺将Fe(100)/Cr(100)生长在GaAs芯片上,其工艺条件是,保持MBE室内剩余压力为6.7×10-9Pa,芯片温度20℃,淀积速率:对于Fe0.06nm/s;对于Cr0.1nm/s。它们每层的厚度约(0.99nm,通常为30层。为获得上述淀积速率,还专门设计了坩埚蒸发器。经实验发现,当Cr的厚度小于(0.93nm 时,它与Fe层之间偶合的一个反向铁磁特性(AF)的磁滞回线斜率逐渐增大。图1 显示了Fe层为3nmCr层分别为0.9nm1.2nm 1.8nm,磁感应强度B在±2T 范围内,热力学温度T=4.2Kn=303560 时,3个不同样本的特性。随着Cr 厚度的增加和总层数的降低,Δr/r也升高,而且高斯磁场强度B越弱,Δr/r 越高,当B2T时,[Fe(3nm)/Cr(0.9nm)]红黑电源隔离插座60 膜的Δr/r可达50%以上。实验还发现,即使温度升至室温,B降低
30%Δr/r 也可达到低温值的一半,这一结论具有十分大的实用价值。
就在此前3个月,德国尤利希科研中心的物理学家彼得·格伦贝格尔( Peter Grunberg )领导的研究小组采用分子束外延(MBE)方法制备了铁--铁三层单晶结构薄膜。在薄膜的两层纳米级铁层之间夹有厚度为0.8nm的铬层,实验中逐步减小薄膜上的外磁场,直到取消外磁场,发现膜两边的两个铁磁层磁矩从彼此平行(较强磁场下)转变为反平行(弱磁场下)。换言之,对于非铁磁层铬的某个特定厚度,没有外磁场时,两边铁磁层磁矩是反平行的,这个新现象成为巨磁电阻效应出现的前提。格伦贝格尔接下来发现,两个磁矩反平行时对应高电阻状态,平行时对应低电阻状态,两个电阻的差别高达10%
1990IBM公司的斯图尔特·帕金(S. P. Parkin )首次报道了除铁-铬超晶格,还有钴-钌和钴-铬超晶格也具有巨磁电阻效应。并且随着非磁层厚度增加,上述超晶格的磁电阻值振荡下降。在随后的几年,帕金和世界范围的科学家在过渡金属超晶格和金属多层膜中,到了20种左右具有巨磁电阻振荡现象的不同体系,为GMR材料开辟了广阔的空间,同时帕金采用较普通的磁控溅射技术代替了精密的MBE方法制备薄膜,目前这已经成为工业生产多层膜的标准。
1992A.E.BerkowitzChien等人首次发现了FeCo CuAg 分别形成二元合金颗粒膜中的磁电阻效应,在低温下其Δr/r可达(4060%。随后陆续出现了Fe-AgFe-CuCoxAg1-x/Ag 等颗粒多层膜。
1993年人们在钙钛矿型稀土锰氧化物中发现了比GMR 更大的磁电阻效应,即Colossal Magneto ResistanceCMR)庞磁电阻效应,开拓了GMR 研究的新领域。
在发现低磁场GMR 效应之后,1994C.Tsang等研制出全集成化的GMR 器件――自旋阀。同年,美国的IBM公司研制出利用自旋阀原理的数据读出磁头,它将磁盘记录密度提高了17倍,达5Gbit/6.45cm2(in2)
二、巨磁电阻效应的原理及应用
巨磁阻效应是一种量子力学和凝聚态物理学现象,磁阻效应的一种,可以在磁性材料和非磁性材料相间的薄膜层(几个纳米厚)结构中观察到。这种结构物质的电阻值与铁磁性材料薄膜层的磁化方向有关,两层磁性材料磁化方向相反情况下的电阻值,明显大于磁化方向相同时的电阻值,电阻在很弱的外加磁场下具有很大的变化量。
1、巨磁电阻效应的原理
根据导电的微观机理,金属中电子在导电时并不是沿电场直线前进,而是不断与处于晶格位置的原子实产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速和随机散射运动的叠加.电子在两次散射之间运动的平均路程称为平均自由程,电子散射几率越小,平均自由程就越长,电阻率就低.欧姆定律R=ρl/S应用于宏观材料时,通常忽略边界效应,把电阻率ρ视为常数.当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显观测到厚度减小,电阻率增加的现象.电子具有自旋特性,在外磁场中电子自旋磁矩的方向平行或反平行于磁场方
钢丝绳卷筒
2 多层膜GMR结构图
在一些铁磁材料中,自旋磁矩与外磁场平行的电子的散射几率,远小于与外磁场反平行的电子材料的总电阻相当于两类电子各自单独存在时的电阻的并联.这个电阻直接影响材料中的总电流.即材料的总电流是两类自旋电子电流之和总电阻是两类自旋电子电流的并联电阻,这就是两电流模型
如图2所示,多层GMR结构中,无外磁场时,上下两层铁磁膜的磁矩是反平行(反铁磁)耦合的——因为这样能量最小.在足够强的外磁场作用下,铁磁膜的磁矩方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合
有两类与自旋相关的散射对巨磁电阻效应有贡献
①界面上的散射
无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行反平行或反平行平行),电子在界面上的散射几率很大,对应于高电阻状态.有外磁场时,上下两层铁磁膜的磁场方向一致,电子在界面上的散射几率很小,对应于低电阻状态.
3 磁阻特性曲线
②铁磁膜内的散射
由于无规则散射,电子也有一定的几率在上下两层铁磁膜之间穿行.无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,在穿行过程中都会经历散射几率
小(平行)和散射几率大(反平行)两种过程,两类自旋电子电流的并联电阻类似于两个中等阻值的电阻的并联,对应于高电阻状态.有外磁场时,上下两层铁磁膜的磁场方向一致,自旋平行的电子散射几率小,自旋反平行的电子散射几率大,两类自旋电子电流的并联电阻类似于一个小电阻与一个大电阻的并联,对应于低电阻状态互助系统
3是一种GMR材料的磁阻特性。由图中正向磁场方向可见,随着外磁场增大,电阻逐渐减小(图中实线),其间有一段线性区域,当外磁场已使两铁磁膜磁场方向完全平行耦合后,继续加大磁场,电阻不再减小,达到磁饱和状态;从磁饱和状态开始减小磁场,(图中虚线).两条曲线不重合是因为铁磁材料具有的磁滞特性.加反向磁场与加正向磁场时的磁阻特性是对称的。
2、巨磁电阻效应的应用
众所周知,计算机硬盘是通过磁介质来存储信息的。一块密封的计算机硬盘内部包含若干个磁盘片,磁盘片的每一面都被以转轴为轴心、以一定的磁密度为间隔划分成多个磁道,每个磁道又被划分为若干个扇区。
液压集成块设计磁盘片上的磁涂层是由数量众多的、体积极为细小的磁颗粒组成,若干个磁颗粒组成一个记录单元来记录1比特(bit)信息,即01。磁盘片的每个磁盘面都相应有一个磁头。当磁头扫描过磁盘面的各个区域时,各个区域中记录的不同磁信号就被转换成电信号,电信号的变化进而被表达为01”,成为所有信息的原始译码。
伴随着信息数字化的大潮,人们开始寻求不断缩小硬盘体积同时提高硬盘容量的技术。1988年,费尔和格林贝格尔各自独立发现了巨磁电阻效应,也就是说,非常弱小的磁性变化就能导致巨大电阻变化的特殊效应。
这一发现解决了制造大容量小硬盘最棘手的问题:当硬盘体积不断变小,容量却不断变大时,势必要求磁盘上每一个被划分出来的独立区域越来越小,这些区域所记录的磁信号也就越来越弱。借助巨磁电阻效应,人们才得以制造出更加灵敏的数据读出头,使越来越弱的磁信号依然能够被清晰读出,并且转换成清晰的电流变化。
最早的磁头是采用锰铁磁体制成的,该类磁头是通过电磁感应的方式读写数据。然而,随着信息技术发展对存储容量的要求不断提高,这类磁头难以满足实际需求。因为使用这种磁头,磁致电阻的变化仅为1%~2%之间,读取数据要求一定的强度的磁场,且磁道密度
不能太大,因此使用传统磁头的硬盘最大容量只能达到每平方英寸20兆位。硬盘体积不断变小,容量却不断变大时,势必要求磁盘上每一个被划分出来的独立区域越来越小,这些区域所记录的磁信号也就越来越弱。
1997年,全球首个基于巨磁阻效应的读出磁头问世。正是借助了巨磁阻效应,人们才能够制造出如此灵敏的磁头,能够清晰读出较弱的磁信号,并且转换成清晰的电流变化。新式磁头的出现引发了硬盘的大容量、小型化火锅餐具革命。如今,笔记本电脑、音乐播放器等各类数码电子产品中所装备的硬盘,基本上都应用了巨磁阻效应,这一技术已然成为新的标准。

本文发布于:2024-09-22 17:22:09,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/198214.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电阻   磁场   效应
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议