垃圾焚烧发电厂锅炉参数技术的选用

-
摘要:垃圾焚烧锅炉的蒸汽参数直接影响到余热锅炉的热效率和焚烧厂的经济收益,为此,分析了中温中压和中温次高压技术对垃圾焚烧发电厂热效率的影响,比较了两种技术在实际运行中的差异,并提出了防止高温腐蚀的措施。
关键词:中温中压;中温次高压;高温腐蚀;热效率
在国内垃圾焚烧发电厂中,垃圾焚烧锅炉的蒸汽参数主要选用中温中压工况(4.0MPa,400℃),中温次高压工况(6.5MPa,450℃)则很少采用;广州李坑垃圾焚烧发电一厂在国内首次采用中温次高压工况(6.5MPa,450℃)技术。蒸汽参数直接影响到余热锅炉的制造成本、运行成本、热效率和焚烧厂的经济收益。
1蒸汽参数对发电厂热效率的影响
采用纯冷凝机组时,发电厂的热效率取决于余热锅炉热效率、凝汽轮机组热效率、发电机效率和线损率。
1.1余热锅炉热效率
余热锅炉热效率与垃圾热值和成分、热源加热燃烧空气和温度、余热锅炉选用的过量空气系数、余热锅炉排烟温度和灰渣含碳量都有密切关系。目前,采用国外先进技术的、在建的较大规模垃圾焚烧电厂余热锅炉的热效率为78%~80%,随着国内垃圾热值的逐年提高和国内垃圾焚烧余热锅炉设计制造水平的提高,国产余热锅炉最终也能达到国际先进水平。
1.2凝汽轮机组热效率
汽轮机热效率与汽轮机容量和进汽参数成正比。由于垃圾成分和焚烧特点,进汽温度和压力都不宜过高,主蒸汽温度不宜超过400℃,蒸汽压力不宜超过4.9~5.9MPa。适用于垃圾焚烧的凝汽轮机必须进行适应参数的改进和改型,才能得到比较理想的热效率,国产常规中低压、中压和次高压凝汽轮机热效率见表1。
表1国产常规中低压、中压和次高压凝汽轮机热效率
1.3垃圾焚烧发电厂的热效率
kkrrrr
目前,我国建造的垃圾焚烧发电厂热效率范围见表2。
表2垃圾焚烧发电厂热效率范围
由此可见,提高垃圾焚烧发电厂热效率的主要途径有:增大垃圾焚烧厂处理规模;提高余热锅炉热效率;提高汽轮机进汽参数;降低线损率。
2中温中压和中温次高压工况蒸汽参数和实际运行情况比较中温中压和中温次高压蒸汽参数与实际运行情况的比较见表3。
表3中温中压、中温次高压两种工况比较
3中温中压、中温次高压工况耐腐蚀情况
中温中压、中温次高压工况耐腐蚀情况比较见表4。
表4中温中压和中温次高压工况的腐蚀性情况比较
图1表示了焚烧炉中受热面管壁温度与腐蚀速度的关系。从表4和图1可看出,当管擘温度达到450℃以上时,锅炉受热面高温腐蚀呈现加剧的现象,在650℃附近高温腐蚀达到最大值。同样材料在中温次高压下使用寿命比中温中压工况要减少一半以上。
上述两种工况的比较是在一定外部条件下的粗略估算。条件不同,上述比率会有不同,但对比的趋势是相近的。在发电量和售电收入方面,次高温高压方案有利,但锅炉设备成本费用及运营维修费用较高。由于中温次高压技术提高了蒸汽参数,其不利因素包括:
图1锅炉受热面管壁温度与腐蚀速度的关系
a)对过热器材料要求高,管壁厚度增加,导致总投资和成本上升(约增加4000万元投资);
b)对过热器的腐蚀高,导致使用寿命减少,更换频率高,增加维护成本(每次更换约500万元);
c)无法控制每年维护时间,在运营中必须注意监测过热器寿命,并保证在焚烧炉检修期问完成过热器的更换。
综合比较25年运行情况,两种工况的经济效果基本相当。实际上,国内外已建成的垃圾焚烧厂中,其余热锅炉约90%以上采用中温中压参数。近年来,由于使用了优质耐腐蚀材料(如高镍合金钢的应用),延长了过热器的寿命,虽然一次性投资较高,但综合经济效益较好。因此,随着优质耐腐蚀材料价格降低和运营管理水平提高,中温次高压次高温参数的应用有增加趋势。 (来源:互联网)
吡咯烷酮羧酸锌本篇文章来源于 环卫科技网(www-hw/) 原文链接:www-hw/html/27/201004/14358.html
立云购物商城4垃圾焚烧发电厂实际运行情况比较
由于广州和珠江三角洲在地域、气候、垃圾组分、垃圾热值等方面都较为接近,特选取深圳平湖垃圾焚烧发电一厂(中温中压技术)、中山中心组团垃圾发电厂(中温中压技术)和李坑一厂(中温次高压技术)2006~2007年的生产运营平均数据进行对比分析,并列出
台湾中鼎工程公司(中温中压技术)2006年的运行参数进行比较,见表5。由此可见,提高蒸汽参数、采用中温次高压并非是提高发电量的唯一途径。影响垃圾焚烧发电厂单位发电量的重要因素还有垃圾热值、运营水平、垃圾焚烧厂处理规模、汽轮发电机组的效率和余热锅炉热效率等。
中温中压和中温次高压参数运营情况分析说明:
a)中温中压和中温次高压参数的垃圾焚烧余热锅炉,主要差别是受热面的材质,特别是过热器,一般认为蒸汽温度450℃是垃圾焚烧锅炉过热器选用材质的分界线,且两种材质的价格相差较大。
表5垃圾焚烧发电厂实际运行情况比较
b)从表5可以看出,中温次高压技术的优势并未能很好地体现,增加的效益与初期投资的增加比率不一致,这主要是由于垃圾实际热值达不到设计要求所引起的。垃圾焚烧炉热值设计点的选择是着眼于整个建设-运行-移交(BOT)周期,在项目投产前期,垃圾热值必然是无法达到设计点的要求,这也就是对中温次高压技术的效率优势不能很好体现的根本原因。 正交相移键控
c)由于我国现有的垃圾焚烧发电设备成熟技术都集中在中温中压技术上,又有一套成熟的中温中压运行管理经验,而中温次高压技术在我国才刚起步,运行维护经验不足,将使蒸汽参数提高带来的收益低于预期。由于中温次高压技术的设备初投资高,投资回收年限将增长,增大了投资风险,降低了投资回报率。
d)截至目前全国单台处理能力最大的垃圾焚烧炉(800t/(炉•d))采用的是中温中压技术,另外,国内尚未有一个BOT形式的垃圾焚烧发电厂采用中温次高压技术,由此可见在现阶段,中温次高压的垃圾焚烧发电系统对于BOT投资人来说还是存在一定的风险的。
e)从我国目前的技术发展趋势来看,随着制造水平的提高、耐腐蚀材料价格的下降以及垃圾分类收集的进一步完善,使得锅炉过热器耐腐蚀能力的进一步提高成为可能,因主蒸汽
参数的提高带来的发电收益将会提高,对于大容量焚烧炉尤为明显,中温次高压技术在我国大容量垃圾焚烧炉上应用是一个发展趋势。
5减缓高温腐蚀的对策
a)为了避免炉内形成还原性气氛,在垃圾焚烧炉内通常采用较高的过量空气系数,一般为1.8~2.2。研究表明,造成垃圾焚烧锅炉高温腐蚀的重要原因是烟气中的各种氯化物对金属管壁的侵蚀;在这些腐蚀发生的条件中,除了温度及烟气中的氯、硫等组分的原因外,烟气中的含氧量是相当重要的因素。金属中的铁与烟气中的氯在氧化性气氛中生成氧化铁(Fe2O3)。Fe2O3是一层致密的保护膜,可阻止Cl2与管壁金属进一步反应和腐蚀。当焚烧炉内为含氧量较低的还原性气氛时,FeCl2在金属表面形成,由于它的气化点很低,生成后迅速挥发,使管壁直接暴露在高温烟气中进一步腐蚀。
b)在设计高参数的锅炉时采用耐高温腐蚀的镍基金属(如INCONEL625)作为过热器高温段材料,以提高过热器的使用寿命。
c)采用有效的除灰装置,如卧式过热器采用振打式除灰器,省煤器采用蒸汽吹灰等。
d)优化锅炉过热器布置,适当增加处于腐蚀温度区的管壁温度,也可减轻高温腐蚀、延长受热面的寿命。
参考文献: 零时刻
[1]赵有才.生活垃圾资源化原理和技术[M].北京:化学工业出版社,2002.
[2]程平.垃圾焚烧技术的应用[J].中国环卫科技,2007(4):18-22.
[3]卞俊,王柯.垃圾焚烧炉的腐蚀问题及其对策[C]//2004年城市生活垃圾焚烧处理技术与设施建设专题研讨会论文集.北京:中国城市环境卫生协会,2005.(来源:互联网)
拳击架本篇文章来源于 环卫科技网(www-hw/) 原文链接:www-hw/html/27/201004/14358_2.html

本文发布于:2024-09-25 08:20:26,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/182570.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:垃圾焚烧   锅炉   高压   腐蚀
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议