全热交换器

全热交换器作为楼宇空调新风换气系统的热能回收设备,可以同时回收回风空气中的显热、及潜热。因此,其节能效果备受关注。本文结合实例对在新风换气系统采用转轮式全热交换器的节能特性及投资回收期等进行了技术经济分析,并与采用显热交换器的情况进行了比较。结果表明:对于新风热负荷中潜热负荷较高(=显热比较低)的夏季高温、多湿的南方城市,采用全热交换器具有较大的节能效果。而且,对防止转轮式全热交换器发生交叉污染的研究成果及设计技巧进行了介绍。
关键词全热交换器热回收节能技术经济分析新风换气交叉污染
1 序言
近年,人们对室内空气环境的要求已经不仅仅限于温度、湿度、风速等与舒适有关的条件,而提升到对于室内空气中有害气体(CO2、VOCs等)浓度、粉尘等与健康密切相关的室内空气质量(IAQ: Indoor Air Quality)的重视。舒适与健康成为现代空调所追求的两大主题。然而,由于建筑节能要求、建筑水平的不断提高,建筑物的气密性越来越好。因此,从卫生与健康的要求来看,房间必须有一定量的新风换气。按照国标《室内空气质量标准》GB/T18883-2002对于住宅、办公建筑,其新风量应不小于30m3/h?人。而对于某些人员密集的公共建筑或是室内有污染源的工业建筑,其换气次数可高达6h-1。较大的换气量,必然会造成较大的热(冷)能损失,导致空调负荷增加。所以,保证IAQ与空调节能形
成一对矛盾,解决这一矛盾是空调工作者面临的新课题。全热交换器可以同时回收空调新风系统回风空气中的显热和潜热,作为楼宇空调新风换气系统的节能设备,其普及推广越来越受到重视。
全热交换器的节能效果与使用地区的气象条件密切相关,采用全热交换器时应从投资和节能效果两方面对其进行综合技术经济分析。本文结合实例对新风换气系统采用全热交换器的节能效果及投资回收期进行了计算分析,并与采用显热交换器的情况作了比较。介绍了防止转轮式全热交换器发生交叉污染的最新研究成果及设计技巧。
程控步进衰减器系统2 转轮式全热交换器热能回收原理
转轮型全热交换器的基本构造如图1所示。在分隔成上、下两个区的壳体中,具有蜂窝状结构的全热交换器转轮由电机驱动,以大约20 rpm的速度在壳体中转动。由于全热交换器转轮是由带有吸湿性涂层的铝箔等材料加工而成。来自室内被污染的回风空气从装置的上半部通过转轮向室外排风时,回风空气中所含热(冷)量和水分的绝大部分将蓄积在转轮中。随着转轮的转动,进入新风区的转轮会将其蓄积的全热能释放给从装置下半部通过转轮的室外新风空气,实现热能回收。
譬如在冬季,室外新风在通过蜂窝状转轮时由于与转轮之间存在着温度差、水蒸气分压差,蓄积在转轮里的显热和水分会放出,使新风被预热和加湿变为温暖、湿润的空气后送到室内。同样原理,在夏季可以实现连续地向室内供给经过被预冷和除湿后的凉爽干燥的新风。从而降低新风热负荷、实现节
能。
3 转轮式全热交换器的节能特性与经济性
3.1 转轮式全热交换器的节能特性
用于评价全热交换器性能的重要指标是热交换效率。全热交换器的热交换效率分为显热(温度)交换效率,潜热(湿度)交换效率和全热(焓)交换效
冷空气温度[℃]34 27.2 27.3
含湿量[g/kg(干)] 21.92 21.92 13.98
比焓[kJ/kg(干)] 90.37 83.27 63.11
新风负荷比[%] 100% 81% 27%
自动升降器
超前支架
吸咪头季
暖空气温度[℃]-4 14.1 13.9
含湿量[g/kg(干)]    2.02    2.02    4.67
比焓[kJ/kg(干)]    1.02 19.30 25.77
新风负荷比[%] 100% 45.9% 27%
按目前显热交换器的售价,需3年才能收回设备投资。采用显热交换器虽然也可以实现节能,但从技术经济综合指标判断,其节能效果远远不如采用全热交换器。而且,从表2可以看出:新风热负荷中潜热负荷所占比例越高(=显热比越低),采用全热交换器的节能效果也就越大。就本例而言,夏季制冷期新风热负荷的显热比约为0.25,全热交换器的节能效果为显热交换器的3.84倍。而在冬季采暖期,新风热负荷的显热比约为0.72,全热交换器的节能效果仅为显热交换器的1.35倍。所以,从节能效果和经济效益两方面来看,对于像上海这样夏季高温、多湿的南方城市,建议在新风换气系统推广使用全热交换器,实现新风换气系统节能降耗。
4 全热交换器发生交叉污染的原因及解决对策家庭智能化控制系统
rbd-5084.1 全热交换器发生交叉污染的原因
转轮式全热交换器发生交叉污染的主要原因有两个:
(1)由于全热交换器转轮旋转所产生的夹带。全热交换器以大约90~120゜/秒的转速连续转动,转轮由回风区进入新风区时,会将一小部分没有来得及离开转轮的回风被夹带到新风区,导致交叉污染发生。根据转轮转速与空气风速计算,发生夹带的转轮扇形区域的圆心角小于8゜。
(2)由于多孔性吸湿材料的吸附作用。现行的全热交换器所使用的吸湿材料为多孔性吸附剂。由于吸附剂微孔不仅对空气中的水蒸气有吸附作用,对有味、有害气体,挥发性有机物(VOCs)等也有吸附作用。即使是在被认为有味、有害气体很少发生的写字楼、宾馆饭店、高级住宅楼等场所,由于各种建筑材料、内部装潢材料及家具等会缓慢地释放出如甲醛、丙酮等挥发性有机物,或是由于吸烟、人体出汗等产生的氨气、尼古丁等气体。这些有害难闻的气体随着回风通过全热交换器转轮时,会有一部分被多孔性吸附剂所吸附,并蓄积在全热交换器转轮中。当全热交换器经过较长使用时间后(至少1年以上),遇到室外空气的湿度、温度等有较大的骤然变化时,这些蓄积的有味、有害气体会从热交换器转轮上释放出来,被新风带回到室内,出现所谓交叉污染。
4.2 防止全热交换器发生交叉污染的对策
对于因全热交换器转轮旋转产生夹带而造成的交叉污染问题,只要在全热交换器转轮进入新风区之前,设置一小块扇形反吹净化区。反吹净化区的一侧连接在新风管的正压端,另一侧与排风管的负压端相连,就可以从根本上得到解决

本文发布于:2024-09-22 23:25:22,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/181890.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:热交换器   新风   转轮
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议