(物理)物理生活中的圆周运动练习题及答案及解析

(物理)物理生活中的圆周运动练习题及答案及解析
一、高中物理精讲专题测试生活中的圆周运动
1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:
(1)盘的转速ω0多大时,物体A开始滑动?
(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?
【答案】(1)
g
快速插头l
μ
(2)
3
4
mgl
kl mg
μ
μ
-
【解析】
【分析】
(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹
力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.
(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.
【详解】
若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.
(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:
μmg=mlω02,
解得:ω0=
g l μ
即当ω0=
g
l
μ
A开始滑动.
(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,
r=l+△x
解得:
3
4
mgl x
kl mg控制器外壳
μ
护坡钢丝网μ
-
V=
【点睛】
当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.
2.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:
(1)滑块A 在半圆轨道最高点对轨道的压力;
(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;
(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内
【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m
【解析】
【详解】
(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:
2211222
A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:
2
A N A v m g F m R
+= 滑块在半圆轨道最高点受到的压力为:
F N =1N汽车报警系统
由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上
(2)爆炸过程由动量守恒定律:
A A
B B m v m v =
解得:v B =3m/s
滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:
)B B B m v m M v =+共(
由能量关系:
2211()-22
P B B B B E m v m M v m gL μ=
-+共 解得E P =0.22J  (3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系
统动量守恒,有:
)B B B m v m M v =+(
若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:
22111()22
B B B B m gL m v m M v μ=-+ 联立解得:
L 1=1.35m
若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:
222112()22
B B B B m gL m v m M v μ=
-+ 联立解得: L 2=0.675m
综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m
3.如图所示,半径R=0.40m 的光滑半圆环轨道处于竖起平面内,半圆环与粗糙的水平地面相切于圆环的端点A .一质量m=0.10kg 的小球,以初速度V 0=7.0m/s 在水平地面上向左做加速度a=3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点.求
(1)小球到A 点的速度
(2)小球到B 点时对轨道是压力
(3)A 、C 间的距离(取重力加速度g=10m/s 2).
【答案】(1) 5/A V m s =  (2)  1.25N F N =    (3)S AC =1.2m
【解析】
简易车棚
【详解】
(1)匀减速运动过程中,有:2202A v v as -=
解得:5/A v m s =
(2)恰好做圆周运动时物体在最高点B 满足: mg=m 21B v R
,解得1B v =2m/s  假设物体能到达圆环的最高点B ,由机械能守恒:12mv 2A =2mgR+12
mv 2B
联立可得:v B =3 m/s
因为v B >v B1,所以小球能通过最高点B . 此时满足2
N v F mg m R
+= 解得  1.25N F N =
(3)小球从B 点做平抛运动,有:
2R=
12
gt 2    S AC =v B ·t      得:S AC =1.2m .
【点睛】
解决多过程问题首先要理清物理过程,然后根据物体受力情况确定物体运动过程中所遵循的物理规律进行求解;小球能否到达最高点,这是我们必须要进行判定的,因为只有如此才能确定小球在返回地面过程中所遵循的物理规律.
4.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m 、2m 的小球A 和小物块B ,开始时B 静止在细管正下方的水平地面上。保持细管竖直用手轻轻摇动细管,稳定后A 在水平面内做匀速圆周运动而B 保持静止状态。某时刻B 静止在地面上且对地面的压力恰好为零。已知重力加速度为g ,不计一切阻力。求:
()1该时刻连接A 的轻绳与竖直方向的夹角θ;
拔桩
()2该时刻A 的线速度大小v ;
()3从该时刻起轻摇细管使B 升高到离地高度为/2l 处保持静止,求B 上升过程中手对
A 、
B 系统做的功。
【答案】()1?60o ;()32?2
gl ;()938mgl 。 【解析】
【分析】
(1)对B 根据平衡求绳子的拉力;对A 球分析,由力的平衡条件可求绳与竖直方向夹角θ;
(2)对A 水平方向做圆周运动,利用牛顿第二定律列式求解;
(3)由力的平衡条件和牛顿第二定律并结合功能关系列式联立可求整个过程中人对A 、B 系统做的功。
【详解】
(1)B 对地面刚好无压力,故此时绳子的拉力为2T mg =
对A 受力分析如图所示:
在竖直方向合力为零,故cos T mg θ=
代入数据解得:60θ=o
(2)A 球水平方向做圆周运动,由牛顿第二定律得:2sin sin v T m l θθ
=代入数据解得:32
gl v =(3)当B 上升
2l 时,拉A 的绳长为32l ,此时对水平方向上有: 21sin 3sin 2
v T m l θθ= 联立解得:132v gl =
A 相对于原来的高度下降的距离:cos 24l l h V θ==
B 物体重力势能的增加量:122
l E mg mgl =⋅=V  A 物体重力势能的减少量:244l mgl E mg =⋅
=V A 物体动能的增加量2231113228
E mv mv mgl =-=V  对系统运用功能关系可得手对系统做的功:12298W E E E mgl =-+=
V V V  【点睛】
本题综合考查共点力平衡、牛顿第二定律和功能关系,对于圆锥摆问题,关键分析小球的受力情况,确定其向心力,运用牛顿第二定律和圆周运动的知识结合解答。
5.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑

本文发布于:2024-09-22 01:59:34,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/129542.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:滑块   弹簧   物体   小车
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议