共模电感

共模电感(Common mode Choke),也叫共模扼流圈,常用于电脑的开关电源中过滤共模的电磁干扰信号。在板卡设计中,共模电感也是起EMI滤波的作用,用于抑制高速信号线产生的电磁波向外辐射发射。
目录
初识共模电感
共模电感工作原理
漏感和差模电感钢丝螺套标注
从看板卡整体设计看共模电感
电腐蚀打标机
1. 概述
2. 主板Layout(布线)设计
3. 主板布线的划断
4. 主板接口的设计
从必要性看共模电感
共模电感的测量与诊断
1. 概述
2. 漏感的重要性
3. 共模扼流圈综述
4. 用LISN原理测量共模扼流圈饱和特性的方法
5. 电流原理测量共模扼流圈饱和特性的方法
6. 共模扼流圈内存在的差模与共模磁通
7. 参考以下围绕麦克斯韦方程所进行的讨论
8. 漏感综述 滨州玻璃垫片
9. 无辐射共模扼流圈结构
10. 壶形铁芯结构
11. E形铁芯结构
共膜滤波器JEPSUN-CM系列
初识共模电感
共模电感工作原理
漏感和差模电感
从看板卡整体设计看共模电感
1. 概述
2. 主板Layout(布线)设计
3. 主板布线的划断
4. 主板接口的设计
从必要性看共模电感
共模电感的测量与诊断
1. 概述
2. 漏感的重要性
3. 共模扼流圈综述
4. 用LISN原理测量共模扼流圈饱和特性的方法
5. 用电流原理测量共模扼流圈饱和特性的方法
6. 共模扼流圈内存在的差模与共模磁通
7. 参考以下围绕麦克斯韦方程所进行的讨论
8. 漏感综述
9. 无辐射共模扼流圈结构
10. 壶形铁芯结构
11. E形铁芯结构
共膜滤波器JEPSUN-CM系列
展开
自动点火器编辑本段初识共模电感
 
 
共模电感的一种
小知识:EMI(Electro Magnetic Interference,电磁干扰)
  计算机内部的主板上混合了各种高频电路、数字电路和模拟电路,它们工作时会产生大量高频电磁波互相干扰,这就是EMIEMI还会通过主板布线或外接线缆向外发射,造成电磁辐射污染羟基自由基,不但影响其他的电子设备正常工作,还对人体有害。
  PC板卡上的芯片在工作过程中既是一个电磁干扰对象,也是一个电磁干扰源。总的来说,我们可以把这些电磁干扰分成两类:串模干扰(差模干扰)与共模干扰(接地干扰)。以主板上的两条PCB走线(连接主板各元件的导线)为例,所谓串模干扰,指的是两条走线之间的干扰;而共模干扰则是两条走线和PCB地线之间的电位差引起的干扰。串模干扰电流作用于两条信号线间,其传导方向与波形和信号电流一致;共模干扰电流作用在信号线路和地线之间,干扰电流在两条信号线上各流过二分之一且同向,并以地线为公共回路.
 
 
共模电感
如果板卡产生的共模电流不经过衰减过滤(尤其是像USBIEEE 1394接口这种高速接口走线上的共模电流),那么共模干扰电流就很容易通过接口数据线产生电磁辐射——在线缆中因共模电流而产生的共模辐射。美国FCC、国际无线电干扰特别委员会的CISPR22以及我国的GB9254等标准规范等都对信息技术设备通信端口的共模传导干扰和辐射发射有相关的限制要求。为了消除信号线上输入的干扰信号及感应的各种干扰,我们必须合理安排滤波电路来过滤共模和串模的干扰,共模电感就是滤波电路中的一个组成部分。
  共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面又要抑制本身不向外发出电磁干扰,避免影响同一电磁环境下其他电子设备的正常工作。
  图2是我们常见的共模电感的内部电路示意图,在实际电路设计中,还可以采用多级共模电路来更好地滤除电磁干扰。此外,在主板上我们也能看到一种贴片式的共模电感(3),其结构和功能与直立式共模电感几乎是一样的。
编辑本段共模电感工作原理
  为什么共模电感能防EMI?要弄清楚这点,我们需要从共模电感的结构开始分析。
  共模电感的滤波电路,LaLb就是共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电
 
2 3
流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。
  事实上,将这个滤波电路一端接干扰源,另一端接被干扰设备,则LaC1LbC2就构成两组低通滤波器,可以使线路上的共模EMI信号被控制在很低的电平上。该电路既可以抑制外部的EMI信号传入,又可以衰减线路自身工作时产生的EMI信号,能有效地降低EMI干扰强度。
  现在国内生产的一种小型共模电感,采用高频之杂讯抑制对策,共模扼流线圈结构,讯号
不衰减,体积小、使用方便,具有平衡度佳、使用方便、高品质等优点。广泛使用在双平衡调音装置、多频变压器、阻抗变压器、平衡及不平衡转换变压器...等。
  还有一种共模滤波器电感/EMI滤波器电感采用铁氧体磁心,双线并绕,杂讯抑制对策佳,高共模噪音抑制和低差模噪声信号抑制,低差模噪声信号抑制干扰源,在高速信号中难以变形,体积小、使用方便,具有平衡度佳、使用方便、高品质等优点。广泛使用在抑制电子设备EMI噪音、个人电脑及外围设备的 USB线路、DVCSTBIEEE1394线路、液晶显示面板、低压微分信号...等。
编辑本段漏感和差模电感
  对理想的电感模型而言,当线圈绕完后,所有磁通都集中在线圈的中心内。但通常情况下环形线圈不会绕满一周,或绕制不紧密,这样会引起磁通的泄漏。共模电感有两个绕组,其间有相当
 
共模电感
大的间隙,这样就会产生磁通泄漏,并形成差模电感。因此,共模电感一般也具有一定的差模干扰衰减能力。
  在滤波器的设计中,我们也可以利用漏感。如在普通的滤波器中,仅安装一个共模电感,利用共模电感的漏感产生适量的差模电感,起到对差模电流的抑制作用。有时,还要人为增加共模扼流圈的漏电感,提高差模电感量,以达到更好的滤波效果。
编辑本段从看板卡整体设计看共模电感
概述
  在一些主板上,我们能看到共模电感,但是在大多数主板上,我们都会发现省略了该元件,甚至有的连位置也没有预留。这样的主板,合格吗?
  不可否认,共模电感对主板高速接口的共模干扰有很好的抑制作用,能有效避免EMI通过线缆形成电磁辐射影响其余外设的正常工作和我们的身体健康。但同时也需要指出,板卡的防E
 
共模电感
MI设计是一个相当庞大和系统化的工程,采用共模电感的设计只是其中的一个小部分。高速接口处有共模电感设计的板卡,不见得整体防EMI设计就优秀。所以,从共模滤波电路我们只能看到板卡设计的一个方面,这一点容易被大家忽略,犯下见木不见林的错误。
  只有了解了板卡整体的防EMI设计,我们才可以评价板卡的优劣。那么,优秀的板卡设计在防EMI性能上一般都会做哪些工作呢?
主板Layout(布线)设计
  对优秀的主板布线设计而言,时钟走线大多会采用屏蔽措施或者靠近地线以降低EMI。对
多层PCB设计,在相邻的PCB走线层会采用开环原则,导线从一层到另一层,在设计上就会避免导线形成环状。如果走线构成闭环,就起到了天线的作用,会增强EMI辐射强度
  信号线的不等长同样会造成两条线路阻抗不平衡而形成共模干扰,因此,在板卡设计中都会将信号线以蛇形线方式处理使其阻抗尽可能的一致,减弱共模干扰。同时,蛇形线在布线时也会最大限度地减小弯曲的摆幅,以减小环形区域的面积,从而降低辐射强度。
  在高速PCB设计中,走线的长度一般都不会是时钟信号波长透明口罩1/4的整数倍,否则会产生谐振,产生严重的EMI辐射。同时走线要保证回流路径最小而且通畅。对去耦电容的设计来说,其设置要靠近电源管脚,并且电容的电源走线和地线所包围的面积要尽可能地小,这样才能减小电源的波纹和噪声,降低EMI辐射。
  当然,上述只是PCBEMI设计中的一小部分原则。主板的Layout设计是一门非常复杂而精深的学问,甚至很多DIYer都有这样的共识:Layout设计得优秀与否,对主板的整体性能有着极为重大的影响。

本文发布于:2024-09-24 03:22:01,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/125913.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:共模   电感   干扰   设计   电流   产生
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议