热管理系统、车辆和热管理系统的控制方法与流程



1.本技术涉及车辆技术领域,更具体而言,涉及一种热管理系统、车辆和热管理系统的控制方法。


背景技术:



2.在相关技术中,汽车的电池需要保持在较为适宜的温度下才能保持良好的性能。当电池温度过低时需要用热水对电池进行加热,电池内冷却液借助水水换热器以传导的方式吸收高温回路冷却液的热量,从而实现对电池冷却液的加热。然而,这样的方案增加了水水换热器的成本,同时通过水水换热器传递热量,导致热量传递响应缓慢,传热效率低。


技术实现要素:



3.本技术实施方式提供了一种热管理系统、车辆和热管理系统的控制方法。
4.本技术实施方式的热管理系统用于车辆。热管理系统包括第一回路、第二回路、动力电池和混合腔。所述第一回路用于为车辆的驾驶舱供热。所述动力电池设置在所述第二回路。所述混合腔分别连接所述第一回路和所述第二回路,并将所述第一回路和所述第二回路中的冷却液混合。
5.在本技术实施方式的热管理系统中,热管理系统用于车辆,热管理系统中的冷却液分别流向第一回路和第二回路,部分冷却液通过第一回路为车辆的驾驶舱供热,另一部分冷却液进入混合腔与第二回路的冷却液混合后通过第二回路流向动力电池,使得第二回路的冷却液温度适宜,以对动力电池进行加热保温。
6.在某些实施方式中,所述第一回路包括主回路、支回路和阀组件,所述主回路用于为所述驾驶舱供热,所述混合腔分别连接所述支回路和所述第二回路,所述阀组件用于连通所述主回路和所述支回路,并调节冷却液分别流向所述主回路和所述支回路。
7.在某些实施方式中,所述阀组件为三通阀,所述三通阀包括第一接口、第二接口和第三接口,所述第一接口连接进水管路,所述第二接口连接所述主回路,所述第三接口连接所述支回路。
8.在某些实施方式中,所述热管理系统还包括三通管件,所述三通管件分别连接所述主回路和所述支回路的后端以及回水管路。
9.在某些实施方式中,所述阀组件能够控制冷却液流入所述主回路和所述支回路的比例。
10.在某些实施方式中,所述热管理系统还包括温度传感器,所述温度传感器用于探测所述第二回路中流向所述动力电池的冷却液的温度,所述阀组件能够根据所述温度传感器探测的温度调节冷却液流入所述主回路和所述支回路的比例。
11.在某些实施方式中,所述热管理系统还包括暖风芯体,所述暖风芯体设置在所述主回路,所述暖风芯体用于为所述车辆的驾驶舱供热。
12.在某些实施方式中,所述混合腔包括第一混合接口、第二混合接口、第三混合接口
和第四混合接口,所述第一混合接口和所述第二混合接口连接所述第二回路,所述第三混合接口和所述第四混合接口连接所述第一回路。
13.在某些实施方式中,所述热管理系统还包括泵体,所述泵体设置在所述第二回路,所述泵体用于驱动冷却液在所述第二回路中流动。
14.本技术实施方式的车辆包括车身和上述任一项实施方式所述的热管理系统,所述热管理系统设置在车身上。
15.本技术实施方式的热管理系统的控制方法包括:
16.读取设置在所述热管理系统的第二回路的温度传感器的温度值,所述温度传感器用于探测所述第二回路中流向设置在所述第二回路的动力电池的冷却液的温度;
17.在所述温度值低于所述预定温度值时,调节设置在所述热管理系统的第一回路的阀组件以提高进入所述第一回路的支回路的冷却液的流量,所述支回路和所述第二回路通过混合腔连通;
18.在所述温度值高于所述预定温度值时,调节所述阀组件以降低进入所述支回路的冷却液的流量。
19.在本技术实施方式的热管理系统、车辆和热管理系统的控制方法中,热管理系统用于车辆,热管理系统中的冷却液分别流向第一回路和第二回路,部分冷却液通过第一回路为车辆的驾驶舱供热,另一部分冷却液进入混合腔与第二回路的冷却液混合后通过第二回路流向动力电池,使得第二回路的冷却液温度适宜,以对动力电池进行加热保温。
20.本技术的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本技术的实践了解到。
附图说明
21.本技术的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
22.图1是本技术实施方式的热管理系统的结构示意图;
23.图2是本技术实施方式的车辆的结构示意图;
24.图3是本技术实施方式的热管理系统的另一结构示意图;
25.图4是本技术实施方式的热管理系统的又一结构示意图;
26.图5是本技术实施方式的热管理系统的模块结构示意图;
27.图6是本技术实施方式的热管理系统的控制方法的流程示意图。
28.主要元件符号说明:
29.热管理系统100、
30.处理器101、第一回路10、主回路11、支回路12、阀组件13、第一接口131、第二接口132、第三接口133、进水管路14、回水管路15、第二回路20、动力电池30、混合腔40、第一混合接口41、第二混合接口42、第三混合接口43、第四混合接口44、三通管件50、温度传感器60、暖风芯体70、泵体80、车辆200、车身201。
具体实施方式
31.下面详细描述本技术的实施方式,所述实施方式的示例在附图中示出,其中自始
至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本技术,而不能理解为对本技术的限制。
32.在本技术中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
33.下文的公开提供了许多不同的实施方式或例子用来实现本技术的不同结构。为了简化本技术的公开,下文中对特定例子的部件和设定进行描述。当然,它们仅仅为示例,并且目的不在于限制本技术。此外,本技术可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。此外,本技术提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
34.请参阅图1和图2,本技术实施方式的热管理系统100用于车辆200。热管理系统100包括第一回路10、第二回路20、动力电池30和混合腔40。第一回路10用于为车辆200的驾驶舱供热。动力电池30设置在第二回路20。混合腔40分别连接第一回路10和第二回路20,并将第一回路10和第二回路20中的冷却液混合。
35.在本技术实施方式的热管理系统100中,热管理系统100用于车辆200,热管理系统100中的冷却液分别流向第一回路10和第二回路20,部分冷却液通过第一回路10为车辆200的驾驶舱供热,另一部分冷却液进入混合腔40与第二回路20的冷却液混合后通过第二回路20流向动力电池30,使得第二回路20的冷却液温度适宜,以对动力电池30进行加热保温。
36.可以理解的是,车辆200的热管理系统100可以包括多套管路,以实现不同的供暖和冷却的功能。例如,车辆200可以通过多条管路系统为驾驶舱和动力电池30供热,以保证驾驶舱的室内温度以及动力电池30的正常工作。
37.具体地,在本技术实施方式的热管理系统100中,通常为动力电池30加热的冷却液需要低于40℃,而用于给乘员舱加热的冷却液的温度需要高于60℃,也就是说第一回路10中的冷却液的温度高于第二回路20中的冷却液的温度。可以理解的是,在冷却液循环一段时间后,冷却液的温度会下降,此时,可以开启混合腔40使得第一回路10和第二回路20中的冷却液混合并分别回到第一回路10和第二回路20。这样,回到第一回路10的冷却液温度少许下降,可以通过压缩机和室外换热器等元件使得第一回路10中的冷却液温度恢复。而回到第二回路20中的冷却液温度上升,使得第二回路20中的冷却液的温度适宜,再对动力电池30加热保温。当然,也可以在一开始就开启混合腔40,使得第一回路10和第二回路20的冷却液始终处于合适的范围内。
38.进一步地,在本技术实施方式的热管理系统100中,通过混合腔40将第一回路10和第二回路20导通,使得第一回路10中温度较高的冷却液可以与第二回路20中温度较低的冷却液混合,保证第二回路20中的冷却液的温度合适。避免了相关技术中在第二回路20中增加水水换热器或加热器的成本,简化了原有的管路系统,并且直接将冷却液混合在一起,使得热量传递的响应快速,传递效率高。
39.请参阅图1,在某些实施方式中,第一回路10包括主回路11、支回路12和阀组件13,主回路11用于为驾驶舱供热,混合腔40分别连接支回路12和第二回路20,阀组件13用于连通主回路11和支回路12,并调节冷却液分别流向主回路11和支回路12。
40.如此,第一回路10的冷却液通过阀组件13分别流向主回路11和支回路12,以使得部分冷却液可以分流值主回路11为驾驶舱供暖,并使得部分冷却液可以分流支回路12,进入支回路12的冷却液可以通过混合腔40和第二回路20的冷却液混合并回到第二回路20,进而第二回路20的冷却液温度适宜可以对动力电池30加热保温。
41.可以理解的是,热管理系统100的两条回路往往处于车辆200的不同位置,可以将第一回路10分为主回路11和支回路12,支回路12可以延伸至第二回路20附近的位置并与混合腔40连通。阀组件13可以将冷却液分为两部分,部分的冷却液可以通过主回路11以为驾驶舱供热,另一部分的冷却液可以通过支回路12进入混合腔40中。
42.请参阅图1,在某些实施方式中,阀组件13为三通阀,三通阀包括第一接口131、第二接口132和第三接口133,第一接口131连接进水管路14,第二接口132连接主回路11,第三接口133连接支回路12。
43.如此,进水管路14的冷却液通过第一接口131进入三通阀,然后分别通过第二接口132和第三接口133分流至主回路11和支回路12,保证进水管路14的冷却液可以分流实现加热动力电池30和加热驾驶舱两个功能。
44.在本技术实施方式中,不限定阀组件13的具体类型,阀组件13还可以是四通阀或者五通阀等,以满足不同的需求。
45.进一步地,请参阅图1,在某些实施方式中,热管理系统100还包括三通管件50,三通管件50分别连接主回路11和支回路12的后端以及回水管路15。
46.如此,三通管件50同时连接主回路11、支回路12和回水管路15,使得冷却液在通过主回路11和支回路12后可以通过回水管路15流出,保证冷却液在整个管路中的流通。
47.具体地,三通管件50和阀组件13分别设置在主回路11和支回路12的两端,使得主回路11和支回路12可以与进水管路14以及回水管路15构成完成的管路系统,保证冷却液可以实现完成的循环。另外,在一些实施方式中,三通管件50也可以更换为三通阀,使得两个三通阀一起控制冷却液的主回路11以及支回路12的流通。
48.请参阅图1,在某些实施方式中,热管理系统100还包括暖风芯体70,暖风芯体70设置在主回路11,暖风芯体70用于为车辆200的驾驶舱供热。
49.如此,暖风芯体70设置在主回路11,使得冷却液在通过主回路11上时,通过暖风芯体70为驾驶舱供热。
50.在这样的实施方式中,进水管路14的冷却液通过阀组件13分别进入至主回路11和支回路12,这样进入主回路11中的冷却液可以通过暖风芯体70为驾驶舱供热,进入支回路12中的冷却液可以进入混合腔40中使得第二回路20中的冷却液的温度增加。
51.请结合图3和图4,在其它的实施方式中,暖风芯体70还可以设置在第一回路10中的进水管路14或者回水管路15中。在一个例子中,当暖风芯体70设置在进水管路14中时,冷却液通过暖风芯体70为驾驶舱加热后再通过第一回路10进入混合腔40中。这样,第一回路10中的冷却液温度稍有下降,在与第二回路20的冷却液混合后依旧能够为动力电池30加热。在另一个例子中,当暖风芯体70设置在回水管路15中时,冷却液先进入混合腔40再进入
暖风芯体70中。当然,在这样的实施方式中,可以省略阀组件13和三通管件50,只保留一条管路。
52.请参阅图1,在某些实施方式中,阀组件13能够控制冷却液流入主回路11和支回路12的比例。
53.如此,进水管路14的冷却液可以被阀组件13按照一定的比例流入主回路11和支回路12,以保证冷却液可以实现相对应的功能,阀组件13还可以根据动力电池30实际需要的温度改变进入主回路11和支回路12的比例,以对动力电池30和驾驶舱的温度进行对应的调节。
54.进一步地,请参阅图1和图5,在某些实施方式中,热管理系统100还包括温度传感器60,温度传感器60用于探测第二回路20中流向动力电池30的冷却液的温度,阀组件13能够根据温度传感器60探测的温度调节冷却液流入主回路11和支回路12的比例。
55.如此,温度传感器60可以探测第二回路20中流向动力电池30的冷却液的温度,进而可以根据探测的温度值以调节冷却液流入主回路11和支回路12的比例,以快速调节动力电池30的温度。
56.具体地,热管理系统100还包括处理器101,处理器101可以连接温度传感器60和阀组件13,接收温度传感器60的温度信号并控制阀组件13。在一个例子中,在温度传感器60探测到第二回路20中流向动力电池30的冷却液的温度低于预定温度范围时,处理器101接收到温度传感器60的温度信号,处理器101控制阀组件13使得阀组件13改变冷却液流入主回路11和支回路12的比例,进入支回路12的冷却液的比例提高,进而快速提高第二回路20的冷却液温度,保证动力电池30的正常工作。在另一个例子中,在温度传感器60探测到第二回路20中流向动力电池30的冷却液的温度高于预定温度范围时,处理器101接收到温度传感器60的温度信号,处理器101控制阀组件13使得阀组件13改变冷却液流入主回路11和支回路12的比例,进入支回路12的冷却液的比例降低,进而保证第二回路20的冷却液温度正常,保证动力电池30的稳定工作。
57.请参阅图1,在某些实施方式中,混合腔40包括第一混合接口41、第二混合接口42、第三混合接口43和第四混合接口44,第一混合接口41和第二混合接口42连接第二回路20,第三混合接口43和第四混合接口44连接第一回路10。
58.如此,第二回路20的冷却液可以通过第一混合接口41进入混合腔40中,第一回路10的冷却液可以通过第三混合接口43进入混合腔40中,两种温度的冷却液在混合腔40中混合以调节冷却液的温度。混合腔40中的冷却液可以分别通过第二混合接口42和第四混合接口44回到第二回路20和第一回路10,使得流向动力电池30的冷却液的温度适宜,实现动力电池30的快速加热保温。
59.请参阅图1,在某些实施方式中,热管理系统100还包括泵体80,泵体80设置在第二回路20,泵体80用于驱动冷却液在第二回路20中流动。
60.如此,泵体80可以为第二回路20提供压力,驱动第二回路20中冷却液的流动,避免冷却液在第二回路20中流动缓慢甚至堵塞,保证冷却液可以在第二回路20中快速流动实现对动力电池30的加热保温。
61.请参阅图2,本技术实施方式的车辆200包括车身201和上述任一项实施方式的热管理系统100,热管理系统100设置在车身201上。
62.在本技术实施方式的热管理系统100和车辆200中,热管理系统100用于车辆200,热管理系统100中的冷却液分别流向第一回路10和第二回路20,部分冷却液通过第一回路10为车辆200的驾驶舱供热,另一部分冷却液进入混合腔40与第二回路20的冷却液混合后通过第二回路20流向动力电池30,使得第二回路20的冷却液温度适宜,以对动力电池30进行加热保温。
63.在本技术实施方式中,不限定车辆200的具体类型,车辆200可以为混合动力汽车,也可以为纯电动汽车,以满足不同的需求。
64.请参阅图5和图6,本技术实施方式的热管理系统100的控制方法包括:
65.s10,读取设置在热管理系统100的第二回路20的温度传感器60的温度值,温度传感器60用于探测第二回路20中流向设置在第二回路20的动力电池30的冷却液的温度;
66.s20,在温度值低于预定温度值时,调节设置在热管理系统100的第一回路10的阀组件13以提高进入第一回路10的支回路12的冷却液的流量,支回路12和第二回路20通过混合腔40连通;
67.s30,在温度值高于预定温度值时,调节阀组件13以降低进入支回路12的冷却液的流量。
68.在一些实施方式中,热管理系统100还包括处理器101,处理器101可以用于读取设置在热管理系统100的第二回路20的温度传感器60的温度值,温度传感器60用于探测第二回路20中流向设置在第二回路20的动力电池30的冷却液的温度;和用于在温度值低于预定温度值时,调节设置在热管理系统100的第一回路10的阀组件13以提高进入第一回路10的支回路12的冷却液的流量,支回路12和第二回路20通过混合腔40连通;还用于在温度值高于预定温度值时,调节阀组件13以降低进入支回路12的冷却液的流量。
69.在本技术实施方式的热管理系统100、车辆200和热管理系统100的控制方法中,热管理系统100用于车辆200,热管理系统100中的冷却液分别流向第一回路10和第二回路20,部分冷却液通过第一回路10为车辆200的驾驶舱供热,另一部分冷却液进入混合腔40与第二回路20的冷却液混合后通过第二回路20流向动力电池30,使得第二回路20的冷却液温度适宜,以对动力电池30进行加热保温。
70.在本技术的实施方式的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本技术的实施方式的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
71.在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本技术的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
72.尽管上面已经示出和描述了本技术的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本技术的限制,本领域的普通技术人员在本技术的范围内可以对上述实施方式进行变化、修改、替换和变型。

技术特征:


1.一种热管理系统,用于车辆,其特征在于,包括:第一回路,所述第一回路用于为车辆的驾驶舱供热;第二回路;动力电池,所述动力电池设置在所述第二回路;和混合腔,所述混合腔分别连接所述第一回路和所述第二回路,并将所述第一回路和所述第二回路中的冷却液混合。2.根据权利要求1所述的热管理系统,其特征在于,所述第一回路包括主回路、支回路和阀组件,所述主回路用于为所述驾驶舱供热,所述混合腔分别连接所述支回路和所述第二回路,所述阀组件用于连通所述主回路和所述支回路,并调节冷却液分别流向所述主回路和所述支回路。3.根据权利要求2所述的热管理系统,其特征在于,所述阀组件为三通阀,所述三通阀包括第一接口、第二接口和第三接口,所述第一接口连接进水管路,所述第二接口连接所述主回路,所述第三接口连接所述支回路。4.根据权利要求2所述的热管理系统,其特征在于,所述热管理系统还包括三通管件,所述三通管件分别连接所述主回路和所述支回路的后端以及回水管路。5.根据权利要求2所述的热管理系统,其特征在于,所述阀组件能够控制冷却液流入所述主回路和所述支回路的比例。6.根据权利要求2所述的热管理系统,其特征在于,所述热管理系统还包括温度传感器,所述温度传感器用于探测所述第二回路中流向所述动力电池的冷却液的温度,所述阀组件能够根据所述温度传感器探测的温度调节冷却液流入所述主回路和所述支回路的比例。7.根据权利要求2所述的热管理系统,其特征在于,所述热管理系统还包括暖风芯体,所述暖风芯体设置在所述主回路,所述暖风芯体用于为所述车辆的驾驶舱供热。8.根据权利要求1所述的热管理系统,其特征在于,所述混合腔包括第一混合接口、第二混合接口、第三混合接口和第四混合接口,所述第一混合接口和所述第二混合接口连接所述第二回路,所述第三混合接口和所述第四混合接口连接所述第一回路。9.根据权利要求1所述的热管理系统,其特征在于,所述热管理系统还包括泵体,所述泵体设置在所述第二回路,所述泵体用于驱动冷却液在所述第二回路中流动。10.一种车辆,其特征在于,包括:车身;和根据权利要求1-9中任一项所述的热管理系统,所述热管理系统设置在车身上。11.一种热管理系统的控制方法,其特征在于,包括:读取设置在所述热管理系统的第二回路的温度传感器的温度值,所述温度传感器用于探测所述第二回路中流向设置在所述第二回路的动力电池的冷却液的温度;在所述温度值低于所述预定温度值时,调节设置在所述热管理系统的第一回路的阀组件以提高进入所述第一回路的支回路的冷却液的流量,所述支回路和所述第二回路通过混合腔连通;在所述温度值高于所述预定温度值时,调节所述阀组件以降低进入所述支回路的冷却液的流量。

技术总结


本申请公开了一种热管理系统、车辆和热管理系统的控制方法。热管理系统用于车辆。热管理系统包括第一回路、第二回路、动力电池和混合腔。第一回路用于为车辆的驾驶舱供热。动力电池设置在第二回路。混合腔分别连接第一回路和第二回路,并将第一回路和第二回路中的冷却液混合。热管理系统中的冷却液分别流向第一回路和第二回路,部分冷却液通过第一回路为车辆的驾驶舱供热,另一部分冷却液进入混合腔与第二回路的冷却液混合后通过第二回路流向动力电池,使得第二回路的冷却液温度适宜,以对动力电池进行加热保温。力电池进行加热保温。力电池进行加热保温。


技术研发人员:

王宇 丁鹏 林军昌 张旭

受保护的技术使用者:

合众新能源汽车有限公司

技术研发日:

2022.08.05

技术公布日:

2022/11/22

本文发布于:2024-09-20 13:39:44,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/1018.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:回路   冷却液   所述   管理系统
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议