多孔石墨烯材料深度解析

薄膜式压力传感器wan-107多孔石墨烯材料深度解析
多孔石墨烯是指在二维基面上具有纳米级孔隙的碳材料,是近年来石墨烯缺陷功能化的研究热点。多孔石墨烯不仅保留了石墨烯优良的性质,而且相比惰性的石墨烯表面,孔的存在促进了物质运输效率的提高,特别是原子级别的孔可以起到筛分不同尺寸的离子/分子的作用。更重要的是,孔的引入还有效地打开了石墨烯的能带隙,促进了石墨烯在电子器件领域的应用。
图1 多孔石墨烯材料结构示意图
语音会议
多孔石墨烯(PG)又称石墨烯筛(GNM)是指在二维基面上具有纳米孔的碳材料。大量的理论和计算表明,PG中的孔是碳原子从晶格中被移除或者转移到表面而留下的空位,其本身是一种缺陷。对Gr进行高能粒子辐射、化学处理都会导致这种缺陷的产生。在制备的过程中,由于缺陷会影响Gr的电学性质、磁学性质和机械性质,尤其在电学性质中,缺陷造成载流子和声子散射,减少了传输路径,从而影响载流子的迁移率,因此需要尽量保持晶体结构的完整性。但孔缺陷并不都有弊,相反,孔缺陷还可以使Gr获得一些新的功能。如,的理论比表面积高达2640m2/g,但由于π-π电子的作用,很容易产生团聚,导致比表面积会出现大幅下降,而PG不会产生此种现象。网络节点
• 多孔石墨烯的理论基础及特性
在Gr中,理想的碳原子排列是六元环结构。因此,把Gr裁剪成具有一定宽度准一维的纳米材料GNR可以获得两种不同的边缘结构类型——扶手型和锯齿形。具有锯齿形边缘的石墨烯通常呈金属性,而具有扶手型边缘的既可能呈金属性,也可能呈半导体型,这取决于纳米带的宽度。实际上,GNR的边缘是不规则的,并不严格遵守两种边缘结构类型。因为sp
2杂化可以将碳原子排列成不同的多边形结构,只要满足特定的对称规律,非六元环的结构就可能出现。并且,轻微的结构变化都将导致两种边缘类型的GNR在导体性质上无差异。在PG中,这两种边缘结构是同时存在的,因此PG的电子结构不仅可以由其边缘的类型来决定,还取决于活性边缘的数量。然而,由于PG纳米孔的周期性和颈宽不一致,以及各个孔的形状和边缘形貌也不同,其电学性质表现出更复杂的行为。除了对PG电学性质的研究之外,科学家还对GNM的力学性能进行了系统的分子动力学研究。当临界孔密度为15%时,GNM开始产生力学响应的过渡,此时断裂应变表现为密度的函数并具有最小值。当孔密度小于80%时,应力-应变曲线表明GNM的延展性随着孔密度的增加而增加,并且强度超过了5GPa。PG有别于Gr的性质来源于纳米孔的引入。以氧化还原法制备Gr为例,在还原的过程中,表面的含氧官能团也随之被去除,片层间的静电斥力降低,导致Gr很容易发生团聚,这种团聚不仅降低比表面积,还会阻碍其他物质如电解质离子进入到Gr片层中。而PG由于面内不同尺寸孔的引入,避免了团聚造成的不利影响;介孔和大孔可以促进物质的渗透和输运;而微孔则有利于比表面积的提高。纳米孔结构的引入,使得PG具有高的比表面积、丰富的传质通道、可调控的能带隙、高的孔边缘活性、透气性、良好的机械稳定性以及生物化学传感等特性。
• 多孔石墨烯的制备方法
1. 光刻法
光刻技术是指利用高能电子束、离子束或者光子束等对Gr刻蚀,诱发表面碳原子的移除、氧化或者降解。整个过程只需要数秒至数十秒。光刻技术可以得到高质量的Gr孔结构,但是此方法操作成本较高,刻蚀过程往往会伴随着污染物的产生,并造成孔边缘的碳原子排列混乱,影响Gr作为器件使用时的输运性能。
库房管理流程图2 电子束诱导刻蚀石墨烯
2. 催化刻蚀法
受碳原子排列结构的影响,Gr表面呈惰性,普通条件下很难与其他物质反应,但是在一定温度下,借助催化剂的作用,可以使特定位置的碳原子被移除,形成气体溢出,在表面产生孔隙。科学家发现银对Gr中的碳原子有催化氧化作用,通过醋酸银的热分解将银沉积到Gr表面,随后在空气中进行热处理,残留的银用酸洗除去,得到的Gr孔径大小为5到数十纳米,如下图。
图3 石墨烯的催化氧化刻蚀
3. 化学气相沉积法
CVD法被认为是合成无缺陷大尺寸Gr的理想方法,但在一些电子器件领域,连续生长的Gr应用受到限制,因此需要将Gr图案化。科学家使用图案化的氧化铝对铜箔掩模,采用无障碍引导CVD刻蚀法,在铜箔表面生成Gr,如下图。由于铜箔部分表面被氧化铝覆盖,造成此处铜箔的钝化,阻碍Gr的生成。相比自上而下制备PG的方法,此方法制备的Gr晶体结构完整,化学性质稳定,边缘结构不会紊乱,可以人为的调整Gr孔的构型。在晶体材料的刻蚀中,传统刻蚀方法通常为各向异性刻蚀,图案比较简单。
图4 多孔石墨烯的化学气相合成
4. 湿法刻蚀
湿法刻蚀是一种化学腐蚀技术,通常分为酸法和碱法刻蚀。酸法刻蚀最初用于CNT的裁剪,在酸性环境和强氧化剂的条件下,CNT可以沿着轴心被打开,得到GNR。KOH常常被用于多孔碳材料的活化中。碳材料经活化之后,表面生成的无机盐会影响碳原子的电子分布,进而形成刻蚀。由此得到的疏松多孔结构将极大地提高碳材料的比表面积。科学家先对GO进行微波膨胀,再用KOH溶液浸泡,热还原处理制备得到PG,如下图。
>等离子体发生器

本文发布于:2024-09-22 03:58:17,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/1/100859.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:石墨   刻蚀   表面   边缘
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议